Кошки. Породы, стерилизация

Гипотезы происхождения эукариотических клеток. От сложного к простому: трудности симбиогенеза Как появились митохондрии согласно теории симбиогенеза

Расцвет эукариот на Земле начался около 1 млрд лет назад, хотя первые из них появились намного раньше (возможно 2,5 млрд лет назад). Происхождение эукариот могло быть связано с вынужденной эволюцией прокариотических организмов в атмосфере, которая стала содержать кислород.

Симбиогенез - основная гипотеза происхождения эукариот

Существует несколько гипотез о путях возникновения эукариотических клеток. Наиболее популярная - симбиотическая гипотеза (симбиогенез) . Согласно ей, эукариоты произошли в результате объединения в одной клетке разных прокариот, которые сначала вступили в симбиоз, а затем, все более специализируясь, стали органоидами единого организма-клетки. Как минимум симбиотическое происхождение имеют митохондрии и хлоропласты (пластиды вообще). Произошли они от бактериальных симбионтов.

Клеткой-хозяином мог быть относительно крупный анаэробный гетеротрофный прокариот, похожий на амебу. В отличие от других, он мог приобрести способность питаться путем фаго- и пиноцитоза, что позволяло ему захватывать других прокариот. Они не все переваривались, а снабжали хозяина продуктами своей жизнедеятельности). В свою очередь, получали от него питательные вещества.

Митохондрии произошли от аэробных бактерий и позволили клетке-хозяину перейти к аэробному дыханию, которое не только намного эффективней, но и облегчает существование в атмосфере, содержащей достаточно большое количество кислорода. В такой среде аэробные организмы получают преимущество над анаэробными.

Позже в некоторых клетках поселились похожие на ныне живущих синезеленых водорослей (цианобактерий) древние прокариоты. Они стали хлоропластами, дав начало эволюционной ветви растений.

Кроме митохондрий и пластид симбиотическое происхождение могут иметь жгутики эукариот. В них превратились симбионты-бактерии наподобие современных спирохет, имеющих жгутик. Считается, что в последствии из базальных тел жгутиков произошли центриоли, столь важные структуры для механизма клеточного деления эукариот.

Эндоплазматическая сеть, комплекс Гольджи, пузырьки и вакуоли могли произойти от наружной мембраны ядерной оболочки. С другой точки зрения, некоторые из перечисленных органелл могли возникнуть путем упрощения митохондрий или пластид.

Во многом неясным остается вопрос происхождения ядра. Могло ли оно также образоваться из прокариота-симбионта? Количество ДНК в ядре современных эукариот во много раз превышает его количество в митохондриях и хлоропластах. Возможно часть генетической информации последних со временем переместилась в ядро. Также в процессе эволюции происходило дальнейшее увеличение размера ядерного генома.

Кроме того в симбиотической гипотезе происхождения эукариот не все так однозначно с клеткой-хозяином. Им мог и не быть один вид прокариот. Используя методы сравнения геномов, ученые делают вывод, что клетка-хозяин близок к археям, при этом сочетает в себе признаки архей и ряда неродственных групп бактерий. Отсюда можно сделать вывод, что появление эукариот происходило в сложном сообществе прокариот. При этом процесс скорее всего начался с метаногенной археи, вступавшей в симбиоз с другими прокариотами, что было вызвано необходимостью обитания в кислородной среде. Появление фагоцитоза способствовало притоку чужих генов, а ядро образовалось для защиты генетического материала.

Молекулярный анализ показал, что различные белки эукариот происходят от разных групп прокариот.

Доказательства симбиогенеза

В пользу симбиотического происхождения эукариот говорит то, что митохондрии и хлоропласты имеют собственную ДНК, причем кольцевую и не связанную с белками (также обстоит дело у прокариот). Однако в генах митохондрий и пластид есть интроны, чего нет у прокариот.

Пластиды и митохондрии не воспроизводятся клеткой с нуля. Они образуются из ранее существующих таких же органелл путем их деления и последующего роста.

В настоящее время существуют амебы, у которых нет митохондрий, а вместо них есть бактерии симбионты. Также есть простейшие, сожительствующие с одноклеточными водорослями, выполняющими в клетке-хозяине роль хлоропластов.


Инвагинационная гипотеза происхождения эукариот

Кроме симбиогенеза существуют и другие взгляды на происхождение эукариот. Например, инвагинационная гипотеза . Согласно ей, предком эукариотической клетки был не анаэробный, а аэробный прокариот. К такой клетке могли прикрепляться другие прокариоты. Потом их геномы объединялись.

Ядро, митохондрии и пластиды возникли путем впячивания и отшнуровывания участков клеточной мембраны. В эти структуры попадала чужеродная ДНК.

Усложнение генома происходило в процессе дальнейшей эволюции.

Инвагинационная гипотеза происхождения эукариот хорошо объясняет наличие двойной мембраны у органелл. Однако она не объясняет, почему система биосинтеза белка в хлоропластах и митохондриях сходна с прокариотической, в то время как таковая в ядерно-цитоплазматическом комплексе имеет ключевые отличия.

Причины эволюции эукариот

Все разнообразие жизни на Земле (от простейших до покрытосеменных и млекопитающих) дали клетки эукариотического, а не прокариотического типа. Возникает вопрос, почему? Очевидно, ряд особенностей, возникших у эукариот, существенно повысили их эволюционные возможности.

Во-первых, у эукариот есть ядерный геном, который во много раз превосходит количество ДНК у прокариот. При этом эукариотические клетки диплоидны, кроме этого в каждом гаплоидном наборе определенные гены многократно повторяются. Все это обеспечивает, с одной стороны, большие масштабы для мутационной изменчивости, а с другой - уменьшает угрозу резкого снижения жизнеспособности в результате вредной мутации. Таким образом, эукариоты, в отличие от прокариот, обладают резервом наследственной изменчивости.

Эукариотические клетки имеют более сложный механизм регуляции жизнедеятельности, у них существенно больше различных регуляторных генов. Кроме того, молекулы ДНК образовали комплексы с белками, что позволило наследственному материалу упаковываться и распаковываться. Все вместе это дало возможность считывать информацию частями, в разных сочетаниях и количестве, в разное время. (Если в клетках прокариот транскрибируется почти вся информация генома, то в эукариотических клетках обычно менее половины.) Благодаря этому эукариоты могли специализироваться, лучше приспосабливаться.

У эукариот появились митоз, а затем и мейоз. Митоз позволяет воспроизводить генетически сходные клетки, а мейоз сильно увеличивает комбинативную изменчивость, что ускоряет эволюцию.

Большую роль в процветании эукариот сыграло приобретенное их предком аэробное дыхание (хотя оно есть и у многих прокариот).

На заре своей эволюции эукариоты обзавелись эластичной оболочкой, обеспечивавшей возможность фагоцитоза, и жгутиками, позволившими им двигаться. Это дало возможность эффективней питаться.

Пятьдесят лет назад, в 1967 году, Линн Маргулис (Lynn Margulis) опубликовала развернутое изложение симбиогенетической теории, согласно которой эукариоты (организмы с клеточными ядрами) возникли в результате серии объединений разных клеток между собой. Современная поправка к этой теории гласит, что в основе становления эукариот, по-видимому, была не общая тенденция, охватившая многие эволюционные ветви (как предполагала Маргулис), а уникальное событие, приведшее к слиянию клеток археи и протеобактерии. В результате образовалась сложная клетка с митохондриями, которая и стала первым эукариотом. Дальнейшие симбиогенетические события - например, захват водорослей, ставших хлоропластами, - действительно происходили много раз, но с возникновением эукариот как таковых они не связаны.

Пятьдесят с лишним лет назад, в марте 1967 года, в международном «Журнале теоретической биологии» (Journal of Theoretical Biology) вышла статья «О происхождении клеток, делящихся митозом» (L. Sagan, 1967. On the origin of mitosing cells). Автора статьи звали Линн Саган (Lynn Sagan), но в дальнейшем эта замечательная женщина стала гораздо более известна как Линн Маргулис (Lynn Margulis). Фамилию Саган она носила, потому что была некоторое время замужем за Карлом Саганом (Carl Edward Sagan), астрономом и писателем.

Выход в 1967 году статьи Линн Маргулис (будем для удобства звать ее так) стал началом обновления биологических представлений, которое многие авторы расценили как смену парадигм - то есть, иными словами, как самую настоящую научную революцию (И. М. Мирабдуллаев, 1991. Эндосимбиотическая теория - от фантастики к парадигме). Суть интриги тут проста. Со времен Чарльза Дарвина биологи были убеждены, что основным способом эволюции является дивергенция - расхождение ветвей. Линн Маргулис была первой, кто сумел по-настоящему убедительно объяснить научному сообществу, что механизм некоторых крупных эволюционных событий, скорее всего, был принципиально другим. В центре интересов Маргулис оказалась проблема происхождения эукариот - организмов, клетка которых обладает сложной внутренней структурой с ядром . К эукариотам относятся животные, растения, грибы и многие одноклеточные - амебы, жгутиконосцы , инфузории и прочие. Маргулис показала, что ранняя эволюция эукариот вовсе не сводилась к дивергенции - она включала в себя слияние эволюционных ветвей, причем неоднократное. Дело в том, что по меньшей мере два типа эукариотных органелл - митохондрии , благодаря которым мы можем дышать кислородом, и хлоропласты , осуществляющие фотосинтез, - происходят не от того предка, что основная часть эукариотной клетки (рис. 1). И митохондрии, и хлоропласты - это бывшие бактерии, изначально совсем не родственные эукариотам (протеобактерии в случае митохондрий и цианобактерии - в случае хлоропластов). Эти бактерии были поглощены клеткой древнего эукариота (либо предка эукариот) и продолжили жить внутри нее, сохраняя до поры собственный генетический аппарат.

Таким образом, эукариотная клетка - это, по выражению Маргулис, мультигеномная система . И возникла она в результате симбиоза , то есть взаимовыгодного сожительства разных организмов (точнее, эндосимбиоза , один из участников которого живет внутри другого). Соответствующие эволюционные ветви при этом, разумеется, слились. Такой взгляд на эволюцию получил название теории симбиогенеза .

Сейчас теория симбиогенеза общепринята. Она подтверждена настолько строго, насколько вообще можно подтвердить какую бы то ни было теорию, касающуюся крупномасштабной эволюции. Но научные концепции, в отличие от религиозных догматов, никогда не остаются статичными. Естественно, что общая картина симбиогенеза выглядит для нас сейчас не совсем так (а местами и совсем не так), как представляла ее себе Линн Маргулис полвека назад.

Логика классика

К пятидесятилетию выхода знаменитой статьи о симбиогенезе Journal of Theoretical Biology подготовил специальный выпуск , целиком посвященный творческому наследию Линн Маргулис. В этот выпуск входит обстоятельная статья известного британского биохимика и популяризатора науки Ника Лейна (Nick Lane), в которой современное состояние проблемы происхождения эукариот сравнивается с классическими идеями на эту тему. Лейн нисколько не сомневается, что в основных утверждениях (касающихся происхождения митохондрий и хлоропластов) Маргулис была права; в наше время в этом не сомневается, кажется, никто из серьезных ученых, ибо данные молекулярной биологии на этот счет однозначны. Но дьявол, как известно, живет в деталях. В данном случае мы можем, погрузившись в детали, найти там много нового и интересного, а главное - убедиться, что тема происхождения эукариот далеко не исчерпана.

Начнем с того, что кое-какие частные предположения Маргулис оказались неверны. Это нормально: учитывая огромную скорость развития биологии, просто невероятно, чтобы в статье, опубликованной полвека назад, было точно угадано абсолютно всё. Новые факты, которые не могли быть в свое время известны автору, обязательно внесут какие-нибудь коррективы. Так получилось и тут. Прежде всего, Маргулис настаивала на симбиотическом происхождении не только митохондрий и хлоропластов, но и эукариотных жгутиков . Она считала, что предками жгутиков были закрепившиеся на эукариотной клетке длинные спирально закрученные подвижные бактерии, похожие на современных спирохет (см. рис. 1). Увы, эта гипотеза не получила никаких молекулярно-биологических подтверждений, и сейчас ее больше никто не поддерживает.

В некоторых моментах Маргулис могла бы оказаться права (это не запрещено ни законами природы, ни внутренней логикой ее собственной теории), но тем не менее по не зависящим от нее причинам промахнулась. Например, она считала, что раз уж митохондрии - потомки бактерий, то рано или поздно биологи научатся культивировать их в питательной среде вне эукариотных клеток - ну, как обычных микробов. Если бы такое оказалось возможным, это было бы идеальным доказательством теории симбиогенеза. Увы, на самом деле современные митохондрии принципиально неспособны к самостоятельному выживанию, потому что большая часть их генов в ходе эволюции мигрировала в клеточное ядро и встроилась там в геном эукариотного «хозяина». Теперь белковые продукты этих генов синтезируются за пределами митохондрии, а потом переправляются в нее с помощью особых транспортных систем, принадлежащих эукариотной клетке. Гены, оставшиеся в самой митохондрии, всегда малочисленны - для жизнеобеспечения их не хватит. В 1967 году этого просто еще никто не знал.

Однако по большому счету всё это частности. Мышление Линн Маргулис было синтетическим: она не ограничивалась объяснениями отдельных фактов, а стремилась свести их в целостную систему, описывающую эволюцию живых организмов в контексте истории Земли (рис. 2). Современные научные знания позволяют проверить эту систему представлений на прочность.

Древо и сеть

Всё началось с кислорода. В древнейшей атмосфере Земли молекулярного кислорода (O 2) не было. Потом цианобактерии, первыми освоившие кислородный фотосинтез, стали выделять этот газ в атмосферу (для них он был просто ненужным побочным продуктом). Между тем чистый кислород - это весьма ядовитое вещество для всех, у кого нет специальных биохимических средств защиты от него. Неудивительно, что выбросы кислорода цианобактериями отравили атмосферу Земли и привели к массовому вымиранию. Начался «кислородный холокост» (L. Margulis, D. Sagan, 1997. Microcosmos: four billion years of microbial evolution).

Тут уже необходима поправка. Многие современные исследователи считают, что переход от бескислородной биосферы к кислородной на самом деле был гораздо более постепенным и менее разрушительным, чем предполагают рассуждения о «кислородном холокосте» (см., например: «Великое кислородное событие» на рубеже архея и протерозоя не было ни великим, ни событием , «Элементы», 02.03.2014). Более того, не исключается, что появление свободного кислорода скорее даже повысило разнообразие микроорганизмов, потому что окисление атмосферным кислородом ряда минералов обогатило химический состав среды и создало новые экологические ниши (M. Mentel, W. Martin, 2008. Energy metabolism among eukaryotic anaerobes in light of Proterozoic ocean chemistry). В общем, представление о появлении кислорода в атмосфере как о разовой грандиозной катастрофе, поделившей всю историю Земли на «до» и «после», теперь, похоже, устарело.

Так или иначе, несомненно, что больше всех от обогащения нашей планеты кислородом выиграли альфа-протеобактерии . Они научились непосредственно использовать кислород для получения энергии - причем с огромной эффективностью. А вот у одноклеточных предков эукариот такой способности не было. Они были анаэробными , то есть дышать кислородом не умели. Зато они были хищниками, научившимися поглощать более мелкие клетки путем фагоцитоза . И это дало им превосходную возможность: захватывать некоторых бактерий, не переваривая их, а «порабощая» и присваивая продукты их обмена веществ. Поглотив альфа-протеобактерию, примитивный эукариот получил возможность дышать кислородом - так образовались митохондрии. А поглотив цианобактерию, он получил возможность фотосинтезировать - так образовались хлоропласты. Маргулис считала, что такие события происходили много раз, подчиняясь возникшей общей тенденции. Это - так называемый сценарий сериального эндосимбиоза .

Итак, у Маргулис получается, что на определенном этапе развития жизни эндосимбиоз стал едва ли не всеобщей закономерностью. Тогда в основании эволюционного древа эукариот должна находиться буквально целая сеть эволюционных ветвей, пересекающихся друг с другом за счет эндосимбиотических событий и «растущих» примерно в одном направлении - в том, которое диктовалось сочетанием тогдашних внешних условий со структурными особенностями клеток (рис. 3, А).

Надо сказать, что к концу XX века в эволюционной биологии (и особенно в палеонтологии) и без того завоевала определенную популярность идея, что большинство крупных эволюционных событий имеет закономерный и системный характер. Подобное событие охватывает сразу много эволюционных ветвей, в которых под действием общей наследственности параллельно возникают примерно одни и те же признаки (см., например: А. Г. Пономаренко, 2004. Артроподизация и ее экологические последствия). Примерами таких событий называли маммализацию (происхождение млекопитающих), ангиоспермизацию (происхождение цветковых растений), артроподизацию (происхождение членистоногих), тетраподизацию (происхождение наземных позвоночных), орнитизацию (происхождение птиц) и многое другое. Казалось, что становление эукариот - эукариотизация - великолепно вписывается в этот ряд.

Например, Кирилл Еськов в своей замечательной книге «История Земли и жизни на ней» (написанной в 1990-е годы) говорит следующее: «Скорее всего, различные варианты эукариотности, то есть внутриклеточных колоний, возникали многократно (например, есть основания полагать, что красные водоросли, резко отличающиеся от всех прочих растений по множеству ключевых признаков, являются результатом такой “независимой эукариотизации” цианобактерий)» (К. Ю. Еськов, 2000. История Земли и жизни на ней).

Увы, применительно к эукариотам (прочие примеры «-заций» мы сейчас не обсуждаем) современные данные ставят этот красивый сценарий под сомнение.

Проблема митохондрий

Начнем с того, что обсуждавшаяся Еськовым гипотеза насчет красных водорослей теперь устарела. Молекулярные исследования показывают, что эволюционная линия красных водорослей находится глубоко внутри древа эукариот (они достаточно близкие родственники зеленых растений), и их независимая эукариотизация крайне маловероятна.

Но гораздо серьезнее другое. Если симбиогенез был закономерным, долгим, многоступенчатым процессом, да еще и шел параллельно в разных эволюционных ветвях, то следовало бы ожидать, что мы увидим спектр довольно разнообразных переходных состояний между эукариотами и не-эукариотами. Маргулис именно так и думала. То, что эти переходные состояния не бросаются в глаза, она (насколько можно судить) считала проблемой чисто технической, связанной с недостатком знаний и несовершенством методов. Подтверждается ли это сейчас, когда мы знаем о живых клетках неизмеримо больше, чем знали пятьдесят лет назад?

Порассуждаем. Предполагаемый сериальный эндосимбиоз должен был идти, во-первых, постепенно, и во-вторых - немного по-разному в разных эволюционных линиях (поскольку точных повторений в эволюции не бывает). Исходя из этого, Маргулис предсказывала, что рано или поздно будут обнаружены эукариоты, имеющие хлоропласты, но никогда не имевшие митохондрий; эукариоты, сохранившие бактериальные жгутики (которые резко отличаются по структуре от жгутиков эукариот); и наконец, первично анаэробные эукариоты, в клетках которых нет никаких следов приспособления к кислородной атмосфере. Ни одно из этих предсказаний не подтвердилось. Ни у кого из эукариот нет и намека на жгутики бактериального типа - средства движения у них совсем другие. Никого из известных эукариот нельзя назвать первичным анаэробом - все они, без исключения, прошли когда-то в своей эволюции «кислородную фазу». Наконец, у всех эукариот есть или действующие митохондрии, или их остатки, потерявшие значительную часть функций (гидрогеносомы , митосомы), или - на худой конец - митохондриальные гены, успевшие перейти в ядро.

В конце XX века была популярна гипотеза, что у некоторых современных одноклеточных эукариот митохондрий нет и не было никогда. Таких первично безмитохондриальных эукариот предлагали выделить в особое царство Archezoa . Маргулис довольно рано приняла эту гипотезу и была верна ей до последнего - даже тогда, когда ее уже отвергли многие другие ученые (L. Margulis et al., 2005. “Imperfections and oddities” in the origin of the nucleus). Она считала вполне вероятным, что первично безмитохондриальные эукариоты («архепротисты») до сих пор живут в каких-нибудь труднодоступных бескислородных местообитаниях, где их очень сложно обнаружить. Увы, никаких «архепротистов» до сих пор так и не нашли, а вот остатков митохондрий у тех одноклеточных, которых раньше относили к Archezoa, найдено сколько угодно. На данный момент известен только один эукариот, не имеющий вообще никаких следов митохондрий, - жгутиконосец Monocercomonoides , но положение этого существа на эволюционном древе не оставляет сомнений в том, что и у него митохондрии когда-то были (A. Karnkowska et al., 2016. A eukaryote without a mitochondrial organelle). В общем, на данный момент все без исключения случаи отсутствия митохондрий у эукариот приходится признать вторичными. А это означает, что никакого древнейшего безмитохондриального этапа в истории эукариот - по крайней мере, их современных групп - не было.

Маргулис считала (для своего времени достаточно обоснованно), что на определенном отрезке истории жизни эукариотизация была широкой тенденцией - «трендом», как сейчас принято говорить. Исходя из этого, вполне можно было бы допустить, что разные эукариоты имеют разных предков: например, что эукариотные водоросли произошли от цианобактерий, животные - от хищных бактерий, а грибы - от бактерий-осмотрофов , всасывающих питательные вещества сквозь поверхность клетки. Никаким фундаментальным законам биологии такая гипотеза не противоречит. Но вот фактам она, к сожалению, противоречит разительно. Молекулярная систематика показывает, что общий предок растений, животных и грибов был не переходной формой, а истинным эукариотом, «полностью оперившимся», как выражается Ник Лейн. Можно смело утверждать, что общий предок всех современных эукариот уже был полноценной эукариотной клеткой: у него было ядро, эндоплазматическая сеть , аппарат Гольджи , микротрубочки , микрофиламенты , митохондрии и жгутики. В общем, полный набор эукариотных признаков.

Обратим внимание, что в этот набор признаков не входят хлоропласты. Они появились далеко не у всех эукариот и не сразу. Кроме того, хлоропласты уж точно приобретались неоднократно, причем разными способами в разных эволюционных ветвях. Хлоропласты бывают как первичные (когда эукариот захватывает цианобактерию), так и вторичные (когда эукариот захватывает другого эукариота с цианобактерией внутри) и даже третичные (когда один эукариот захватывает второго эукариота, внутри которого живет третий эукариот, а уж внутри того - цианобактерия). Здесь эволюция, что называется, разгулялась. С митохондриями ситуация совершенно иная: по признаку их наличия мы не видим никакого особого разнообразия и никаких переходных стадий (если не считать многочисленных фактов вторичной потери, но о происхождении эукариот такие факты не говорят ровно ничего). Если бы сценарий Маргулис был полностью верен, то и с митохондриями, и со жгутиками дело обстояло бы примерно так же, как с хлоропластами, - но этого нет.

В чем Маргулис была права, так это в том, что эукариоты в целом весьма предрасположены к захвату эндосимбионтов. Тут можно привести самые разные примеры, вплоть до приобретения некоторыми глубоководными червями симбионтов-бактерий, за счет которых эти черви, собственно, и живут (В. В. Малахов, 1997. Вестиментиферы - автотрофные животные). Бурная эволюция хлоропластов - самое яркое проявление этой тенденции. Только вот «действующие лица», которые их приобрели, по-видимому, уже имели к тому времени полный набор эукариотных признаков, включая митохондрии. Конфигурация эволюционного древа эукариот, насколько мы ее сейчас знаем, просто не допускает других версий.

К этому Лейн добавляет, что базовая структура клеток на удивление мало отличается у разных эукариот в зависимости от их образа жизни (хотя сам образ жизни может отличаться очень сильно). Все характерные компоненты клетки, делающие ее эукариотной, устроены в целом одинаково и у растений, и у животных, и у грибов, и у жгутиконосцев, и у амеб... «Мы теперь знаем, что почти все различия между эукариотами отражают вторичные адаптации», - пишет Лейн в обсуждаемой статье. Единообразие устройства эукариотной клетки означает, что первые этапы ее становления не оставили в современном разнообразии эукариот практически никаких следов.

Уникальное событие

Выводы, которые делает Лейн, на сегодняшний день уже нельзя назвать новыми или неожиданными. Современные данные наиболее совместимы с предположением, что становление эукариотной клетки было единичным событием , завершившимся (в доступном нам масштабе времени) очень быстро. Вероятно, предки эукариот прошли на этом этапе через своего рода «бутылочное горлышко» (в одной более ранней статье Лейн предполагал, что это была маленькая неустойчивая короткоживущая популяция, в которой и свершились все основные перемены; N. Lane, 2011. Energetics and genetics across the prokaryote-eukaryote divide). В результате возник «полностью оперившийся» первый эукариот, потомки которого разошлись по разным экологическим нишам - но фундаментальное устройство клетки у них уже не менялось. Никакой параллельной эукариотизации, таким образом, не было. Во всяком случае, современная биология не находит подтверждающих ее свидетельств.

Данные сравнительной геномики позволяют предположить, что пороговым событием, выделившим эукариот из всей остальной живой природы, было объединение двух клеток - архейной (вероятно, принадлежавшей кому-то из локиархеот) и бактериальной (вероятно, принадлежавшей кому-то из протеобактерий). Образовавшийся суперорганизм и стал первым эукариотом (рис. 3, Б). Современная «мэйнстримная» точка зрения отождествляет это событие с приобретением митохондрий (так называемый «раннемитохондриальный» сценарий; см., например: N. Yutin et al., 2009. The origins of phagocytosis and eukaryogenesis). Действительно, митохондрии - бесспорные потомки протеобактерий, и они-то уж точно проникли в качестве симбионтов в клетку археи (либо примитивного эукариота, не слишком далеко ушедшего от архей). Правда, на вопрос о том, как именно они туда попали, Лейн дает довольно неожиданный ответ. А именно: «Мы не знаем».

В чем тут дело? Согласно классической теории, все внутренние симбионты были приобретены эукариотными клетками путем фагоцитоза, то есть захвата ложноножками с изоляцией захваченного объекта и последующим его перевариванием (в данном случае - несостоявшимся). В отношении хлоропластов это, по всей видимости, верно, а вот в отношении митохондрий - очень сомнительно. Предположение, что фагоцитоз появился раньше, чем митохондрии, плохо согласуется с данными биоинформатики. Сравнительный анализ белковых последовательностей показывает, что актиновые микрофиламенты, образующие внутренний каркас любых ложноножек, скорее всего, сначала были неподвижными - белки, позволяющие им еще и сокращаться, появились заметно позже (Е. В. Кунин, 2014. Логика случая). А это означает, что начаться прямо с фагоцитоза эволюция эукариот не могла - митохондрии были приобретены каким-то другим способом.

Но надо подчеркнуть, что всё это пока лишь предположения. Загадка происхождения митохондрий, не говоря уж о происхождении ядра, до сих пор не разгадана.

Случайность и необходимость

Итак, верна ли гипотеза сериального эндосимбиоза? Да - в том смысле, что в истории эукариот действительно много раз случались симбиотические события. Лучше всего это иллюстрирует долгая, богатая и неплохо сейчас изученная история хлоропластов (P. Keeling et al., 2013. The number, speed, and impact of plastid endosymbioses in eukaryotic evolution). Нет - в том смысле, что сериальный эндосимбиоз не был предпосылкой возникновения эукариот как группы. Эндосимбиотическое событие, которое привело к возникновению эукариот, было, насколько мы сейчас можем судить, уникальным.

Таким образом, сценарий «параллельной эукариотизации» не подтверждается. Это отнюдь не значит, что эволюционных событий подобного типа вообще не бывает: некоторые из них подробно описаны палеонтологами (например, маммализация зверообразных рептилий, которые приобретают признаки млекопитающих параллельно в нескольких эволюционных ветвях). Более того, список подобных «параллельных сценариев» в последнее время даже пополняется. «Элементы» не раз писали о гипотезе независимого возникновения нервной системы в двух совершенно разных ветвях многоклеточных животных (см. Дискуссия о роли гребневиков в эволюции продолжается , «Элементы», 18.09.2015). Но возникновение эукариот - одно из самых уникальных событий во всей истории жизни на Земле. Вероятно, потому оно и выпадает из этого ряда.

В современной научной литературе есть такое понятие, как гипотеза редкой Земли (см. Rare Earth hypothesis). Сторонники этой гипотезы допускают, что относительно просто устроенная жизнь (бактериального уровня организации) может существовать на множестве планет и быть во Вселенной довольно обычным явлением. А вот относительно сложная жизнь (эукариотная или сопоставимая с ней) возникает только при редчайшем стечении обстоятельств; не исключено, что планета с подобной жизнью - всего одна в Галактике. Если гипотеза редкой Земли верна, то именно возникновение эукариот, скорее всего, является рубежным событием, отделяющим «простую» жизнь (широко распространенную) от «сложной» (маловероятной).

К похожим выводам недавно (и совершенно независимо) пришел автор известной книги «Происхождение жизни» Михаил Никитин. «Пока мы не знаем даже, насколько закономерно было появление эукариот. Если для других этапов развития жизни, таких как переход от мира РНК к РНК-белковому миру, обособление прокариотных клеток из доклеточного “мира вирусов” или появление фотосинтеза, мы с уверенностью можем сказать, что они закономерны и практически неизбежны, коль скоро жизнь уже появилась, то появление эукариот в прокариотной биосфере могло быть очень маловероятно. Возможно, что в нашей Галактике есть миллиарды планет с жизнью бактериального уровня, но только на Земле появились эукариоты, на основе которых появились многоклеточные животные и затем разумные существа» (М. Никитин, 2014. Выдвинута новая гипотеза происхождения эукариотической клетки). Может быть, нам потому так и сложно разобраться в деталях происхождения эукариот: это уникальное (в масштабах планеты) событие, к которому очень трудно приложить принцип униформизма , требующий «по умолчанию» исходить из единообразия факторов и процессов во все моменты времени. Но как раз поэтому загадка происхождения эукариот - одна из самых увлекательных во всей биологии. Нерешенных вопросов в этой области еще множество, здесь (как и в обсуждаемой статье Ника Лейна) упомянуты далеко не все из них.

Министерство здравоохранения Украины

Запорожский государственный медицинский университет

Кафедра микробиологии, вирусологии и иммунологии

Реферат на тему:

«Теории происхождения риккетсий и митохондрий»

подготовила студентка

3 курса 30 группы

Михеева Евгения Сергеевна

Запорожье

1. Теория симбиогенеза

2. Риккетсии

3. Обнаружен ближайший родственник митохондрий

4. Ник Лейн

5. Отрывки из научно-популярной книги Ника Лейна « Энергия, секс, самоубийство. Митохондрии и смысл жизни»

6. Особенности обмена веществ

Список литературы

Теория симбиогене́за

(симбиотическая теория, эндосимбиотическая теория, теория эндосимбиоза ) объясняет механизм возникновения некоторых органоидовэукариотической клетки - митохондрий, гидрогеносом и пластид.

Теорию эндосимбиотического происхождения хлоропластов впервые предложил в 1883 году Андреас Шимпер , показавший их саморепликацию внутри клетки. Её возникновению предшествовал вывод А. С. Фаминцина и О. В. Баранецкого о двойственной природе лишайников симбиотического комплекса грибаи водоросли (1867 год). К. С. Мережковский в 1905 году предложил само название «симбиогенез», впервые детально сформулировал теорию и даже создал на её основе новую систему органического мира. Фаминцин в 1907 году, опираясь на работы Шимпера, также пришёл к выводу, что хлоропласты являются симбионтами, как и водоросли в составе лишайников.

В 1920-е годы теория была развита Б. М. Козо-Полянским, было высказано предположение, что симбионтами являются и митохондрии. Затем долгое время о симбиогенезе практически не упоминали в научной литературе. Второе рождение расширенная и конкретизированная теория получила уже в работах Линн Маргулис начиная с 1960-х годов.

Симбиотическое происхождение митохондрий и пластид

В результате изучения последовательности оснований в митохондриальной ДНК были получены весьма убедительные доводы в пользу того, что митохондрии - это потомки аэробных бактерий (прокариот), родственных риккетсиям, поселившихся некогда в предковой эукариотической клетке и «научившимися» жить в ней в качестве симбионтов. Теперь митохондрии есть почти во всех эукариотических клетках, размножаться вне клетки они уже не способны.

Существуют свидетельства того, что первоначально эндосимбиотические предки митохондрий не могли ни импортировать белки, ни экспортировать АТФ. Вероятно, первоначально они получали от клетки-хозяина пируват, а выгода для хозяина состояла в обезвреживании аэробными симбионтами токсичного для нуклеоцитоплазмы кислорода.

Симбиотическая теория происхождения органелл стала классикой современной биологии. На повестке дня стоят вопросы ее конкретизации, построение филогении, симбиоза, поиск родственных связей, в общем большая и важная работа, без которой невозможно «построить мост» от теории к практике. Многочисленные данные указывают, что таксономический источник происхождения митохондрий - порядок Rickettsiales. Напомним, что риккетсии также как и митохондрии не могут существовать вне клетки-хозяина, но в отличие от последних часто вредят хозяину, например, вызывая сыпной тиф. Нашим соотечественником В.В. Емельяновым из института эпидемиологии и микробиологии им. Н.Ф. Гамалеи и его коллегами еще в 2001 году предложена гипотеза о том, что современные патогенные риккетсии и митохондрии имеют общего предка, подобного сосуществующим с парамециями риккетсиеподобным эндосимбионам (РПЭ). По мнению авторов работы (В.В. Емельянов, М.Ю. Высоких) «последний общий предок не только утратил избыточные гены …, но также передал в хозяйский геном какие-то жизненно важные гены». При помощи иммуноблоттинга белков целых клеток и мембранных фракций Rickettsia prowazekii (возбудителя тифа) было найдено, что одним из кодируемых такими генами белков является белок внешней мембраны митохондрий – порин, который кодируется ядром, импортируется в митохондрии, но также используется, причем функционально и Rickettsia prowazekii. Данное наблюдения является если не доказательством, то весьма серьезным подтверждением гипотезы.

Хотя риккетсии по своим размерам сравнимы с некоторыми вируса­ми, они четко отличаются от них. Клетки риккетсии содержат как ДНК, так и РНК (в отношении 1:3,5); они окружены клеточной стенкой, со­держащей мурамовую кислоту и чувствительной к лизоциму. На электронных микрофотографиях ультратонких срезов можно видеть область ядра и клеточную стенку.

Большинство риккетсий никогда не удавалось выращивать вне жи­вой клетки, но их можно размножать в инкубируемых яйцах и в тканях животных; из желточного мешка куриного яйца можно получить 10 9 клеток. В изолированных клетках риккетсий можно выявить некоторые ферменты промежуточного обмена. В ходе культивирования интенсив­ность метаболизма таких клеток ослабевает, но добавление АТР, орга­нических кислот и аминокислот вновь стимулирует их дыхание. Риккет­сий, таким образом, обладают собственным обменом веществ; однако они, вероятно вследствие изменения проницаемости клеточной поверх­ности, не способны регулировать поглощение и выведение метабо­литов.


Похожая информация.


Схема эволюции эукариотических клеток.
1 - образование двойной мембраны ядра,
2 - приобретение митохондрий,
3 - приобретение пластид,
4 - внедрение получившейся фотосинтезирующей эукариотической клетки в нефотосинтезирующую (например, в ходе эволюции криптофитовых водорослей),
5 - внедрение получившейся клетки снова в нефотосинтезирующую (например, при симбиозе этих водорослей с инфузориями).
Цветом обозначен геном
предков эукариот , митохондрий и пластид .

История

Теорию эндосимбиотического происхождения хлоропластов впервые предложил в 1883 году Андреас Шимпер , показавший их саморепликацию внутри клетки. Её возникновению предшествовал вывод А. С. Фаминцына и О. В. Баранецкого о двойственной природе лишайников - симбиотического комплекса гриба и водоросли (1867 год). К. С. Мережковский в 1905 году предложил само название «симбиогенез», впервые детально сформулировал теорию и даже создал на её основе новую систему органического мира. Фаминцын в 1907 году, опираясь на работы Шимпера, также пришёл к выводу, что хлоропласты являются симбионтами, как и водоросли в составе лишайников.

В результате изучения последовательности оснований в митохондриальной ДНК были получены весьма убедительные доводы в пользу того, что митохондрии - это потомки аэробных бактерий (прокариот), родственных риккетсиям , поселившихся некогда в предковой эукариотической клетке и «научившимися» жить в ней в качестве симбионтов (организмов, участвующих в симбиоте). Теперь митохондрии есть почти во всех эукариотических клетках, размножаться вне клетки они уже не способны.

Существуют свидетельства того, что первоначально эндосимбиотические предки митохондрий не могли ни импортировать белки, ни экспортировать АТФ . Вероятно, первоначально они получали от клетки-хозяина пируват , а выгода для хозяина состояла в обезвреживании аэробными симбионтами токсичного для нуклеоцитоплазмы кислорода.

Доказательства

  • имеют две полностью замкнутые мембраны . При этом внешняя сходна с мембранами вакуолей , внутренняя - бактерий .
  • размножаются бинарным делением (причём делятся иногда независимо от деления клетки), никогда не образовываются путем синтеза из других органоидов, как, например, лизосома, образующаяся из комплекса Гольджи , а он, в свою очередь, из ЭПС .
  • генетический материал - кольцевая ДНК , не связанная с гистонами (По доле ДНК митохондрий и пластид ближе к ДНК бактерий, чем к ядерной ДНК эукариот)
  • имеют свой аппарат синтеза белка - рибосомы и др.
  • рибосомы прокариотического типа - c константой седиментации 70S. По строению 16s рРНК близки к бактериальной.
  • некоторые белки этих органелл похожи по своей первичной структуре на аналогичные белки бактерий и не похожи на соответствующие белки цитоплазмы.

Проблемы

  • ДНК митохондрий и пластид, в отличие от ДНК большинства прокариот, содержат интроны .
  • В собственной ДНК митохондрий и хлоропластов закодирована только часть их белков, а остальные закодированы в ДНК ядра клетки. В ходе эволюции происходило «перетекание» части генетического материала из генома митохондрий и хлоропластов в ядерный геном. Этим объясняется тот факт, что ни хлоропласты, ни митохондрии не могут более существовать (размножаться) независимо.
  • Не решён вопрос о происхождении ядерно-цитоплазматического компонента (ЯЦК), захватившего прото-митохондрии. Ни бактерии, ни археи не способны к фагоцитозу , питаясь исключительно осмотрофно . Молекулярно-биологические и биохимические исследования указывают на химерную архейно-бактериальную сущность ЯЦК. Как произошло слияние организмов из двух доменов, также не ясно.

Примеры эндосимбиозов

В наши дни существует ряд организмов, содержащих внутри своих клеток другие клетки в качестве эндосимбионтов. Они, однако, не являются сохранившимися до наших дней первичными эукариотами, у которых симбионты ещё не интегрировались в единое целое и не потеряли своей индивидуальности. Тем не менее, они наглядно и убедительно показывают возможность симбиогенеза.

  • Mixotricha paradoxa - наиболее интересный с этой точки зрения организм. Для движения она использует более 250 000 бактерий Treponema spirochetes , прикреплённых к поверхности её клетки. Митохондрии у этого организма вторично потеряны, но внутри его клетки есть сферические аэробные бактерии, заменяющие эти органеллы.
  • Амёбы рода Pelomyxa также не содержат митохондрий и образуют симбиоз с бактериями.
  • Инфузории рода Paramecium постоянно содержат внутри клеток водоросли, в частности, Paramecium bursaria образует эндосимбиоз с зелёными водорослями рода хлорелла (Chlorella ).
  • Одноклеточная жгутиковая водоросль Cyanophora paradoxa содержит цианеллы - органоиды, напоминающие типичные хлоропласты красных водорослей, но отличающиеся от них наличием тонкой клеточной стенки, содержащей пептидогликан (размер генома цианелл такой же, как у типичных хлоропластов, и во много раз меньше, чем у цианобактерий).

Гипотезы эндосимбиотического происхождения других органелл

Эндосимбиоз - наиболее широко признанная версия происхождения митохондрий и пластид. Но попытки объяснить подобным образом происхождение других органелл и структур клетки не находят достаточных доказательств и наталкиваются на обоснованную критику.

Клеточное ядро, нуклеоцитоплазма

Смешение у эукариот многих свойств, характерных для архей и бактерий, позволило предположить симбиотическое происхождение ядра от метаногенной архебактерии, внедрившейся в клетку миксобактерии . Гистоны , к примеру, обнаружены у эукариот и некоторых архей, кодирующие их гены весьма схожи. Другая гипотеза, объясняющая сочетание у эукариот молекулярных признаков архей и эубактерий, состоит в том, что на некотором этапе эволюции похожие на архей предки нуклеоцитоплазматического компонента эукариот приобрели способность к усиленному обмену генами с эубактериями путём горизонтального переноса генов .

В последнее десятилетие сформировалась также гипотеза вирусного эукариогенеза (англ. viral eukaryogenesis ). В её основании лежит ряд сходств устройства генетического аппарата эукариот и вирусов: линейное строение ДНК, её тесное взаимодействие с белками и др. Было показано сходство ДНК-полимеразы эукариот и поксивирусов , что сделало именно их предков основными кандидатами на роль ядра .

Жгутики и реснички

Примечания

  1. Schimper A.E.W. Uber die Entwickelung der Chlorophyllkorner und Farbkorper // Bot. Ztschr. Bd. - 1883. - Т. Bot. Ztschr. Bd 41. S. 105-114. . Архивировано 8 февраля 2012 года.
  2. Фаминицын А.С. О роли симбиоза в эволюции организмов // Записки Имп. АН. - 1907. - Т. 20, № 3 , вып. 8 .
  3. Мережковский К.С. Терия двух плазм как основа симбиогенезиса, нового учения о происхождении организмов // Уч. зап. Казанского ун-та. - 1909. - Т. 76 .

Теория симбиогенеза (симбиотическая теория, эндосимбиотическая теория, или теория эндосимбиоза) объясняет механизм возникновения некоторых органоидов эукариотической клетки - митохондрий, пластид и гидрогеносом.

Суть концепция заключается в взаимовыгодном сожительстве органеллы с клеткой. Это позволяет предположить об эндосимбиозе, как о выгодном для обоих сторон симбиозе с образованием клеток эукариот (клетки, в которых присутствует ядро). Затем при помощи передачи генетической информации между бактериями осуществлялось их развитие и увеличение популяции. Согласно этой версии, все дальнейшие развитие жизни и жизненных форм обязано предшествующему предку современных видов.

Теорию эндосимбиотического происхождения хлоропластов впервые предложил в 1883 году Андреас Шимпер, показавший их саморепликацию внутри клетки.

Ее возникновению предшествовал вывод А. С. Фаминцына и О. В. Баранецкого о двойственной природе лишайников - симбиотического комплекса гриба и водоросли (1867 год).

Четкие положения системы были составлены русским ботаником и зоологом К. С. Мережковским.

В 1905 году он предложил само название «симбиогенез», впервые детально сформулировал теорию и создал на ее основе новую систему органического мира. Фаминцын в 1907 году, опираясь на работы Шимпера, также пришел к выводу, что хлоропласты являются симбионтами, как и водоросли в составе лишайников.

В 1920-е годы теория была развита Б. М. Козо-Полянским, было высказано предположение, что симбионтами являются и митохондрии. Затем долгое время о симбиогенезе практически не упоминали в научной литературе. Второе рождение расширенная и конкретизированная теория получила уже в работах Линн Маргулис, начиная с 1960-х годов.

В результате изучения последовательности оснований в митохондриальной ДНК были получены весьма убедительные доводы в пользу того, что митохондрии - это потомки аэробных бактерий (прокариот), родственных риккетсиям, поселившихся некогда в предковой эукариотической клетке и «научившимися» жить в ней в качестве симбионтов. Теперь митохондрии есть почти во всех эукариотических клетках, размножаться вне клетки они уже не способны.

Существуют свидетельства того, что первоначально эндосимбиотические предки митохондрий не могли ни импортировать белки, ни экспортировать АТФ. Вероятно, первоначально они получали от клетки-хозяина пируват, выгода для хозяина состояла в обезвреживании аэробными симбионтами токсичного для нуклеоцитоплазмы кислорода.

Пластиды, подобно митохондриям, имеют свои собственные прокариотические ДНК и рибосомы. По-видимому, хлоропласты произошли от фотосинтезирующих бактерий, поселившихся в свое время в гетеротрофных клетках протистов и превратив их в автотрофные водоросли.

Доказательства

Митохондрии и пластиды:

Имеют две полностью замкнутые мембраны. При этом внешняя сходна с мембранами вакуолей, внутренняя - бактерий,

Размножаются бинарным делением (причем делятся иногда независимо от деления клетки), никогда не синтезируются de novo,

Генетический материал - кольцевая ДНК, не связанная с гистонами (По доле ГЦ ДНК митохондрий и пластид ближе к ДНК бактерий, чем к ядерной ДНК эукариот),

Имеют свой аппарат синтеза белка - рибосомы и другие рибосомы прокариотического типа - c константой седиментации 70S. По строению 16s рРНК близки к бактериальной.

Некоторые белки этих органелл похожи по своей первичной структуре на аналогичные белки бактерий и не похожи на соответствующие белки цитоплазмы.

Проблемы

ДНК митохондрий и пластид, в отличие от ДНК большинства прокариот, содержат интроны.

В собственной ДНК митохондрий и хлоропластов закодирована только часть их белков, а остальные закодированы в ДНК ядра клетки. В ходе эволюции происходило «перетекание» части генетического материала из генома митохондрий и хлоропластов в ядерный геном. Этим объясняется тот факт, что ни хлоропласты, ни митохондрии не могут более существовать (размножаться) независимо.

Не решен вопрос о происхождении ядерно-цитоплазматического компонента (ЯЦК), захватившего прото-митохондрии. Ни бактерии, ни археи не способны к фагоцитозу, питаясь исключительно осмотрофно. Молекулярно-биологические и биохимические исследования указывают на химерную архейно-бактериальную сущность ЯЦК. Как произошло слияние организмов из двух доменов, также не ясно.

Примеры эндосимбиозов

В наши дни существует ряд организмов, содержащих внутри своих клеток другие клетки в качестве эндосимбионтов. Они, однако, не являются сохранившимися до наших дней первичными эукариотами, у которых симбионты еще не интегрировались в единое целое и не потеряли своей индивидуальности. Тем не менее, они наглядно и убедительно показывают возможность симбиогенеза.

Mixotricha paradoxa - наиболее интересный с этой точки зрения организм. Для движения она использует более 250 000 бактерий Treponema spirochetes, прикрепленных к поверхности ее клетки. Митохондрии у этого организма вторично потеряны, однако внутри его клетки есть сферические аэробные бактерии, заменяющие эти органеллы.

Амебы рода Pelomyxa также не содержат митохондрий и образуют симбиоз с бактериями.

Инфузории рода Paramecium постоянно содержат внутри клеток водоросли, в частности, Paramecium bursaria образует эндосимбиоз с зелеными водорослями рода хлорелла (Chlorella).

Одноклеточная жгутиковая водоросль Cyanophora paradoxa содержит цианеллы - органоиды, напоминающие типичные хлоропласты красных водорослей, однако отличающиеся от них наличием тонкой клеточной стенки, содержащей пептидогликан. Размер генома цианелл такой же, как у типичных хлоропластов, и во много раз меньше, чем у цианобактерий.

Гипотезы эндосимбиотического происхождения других органелл

Эндосимбиоз - наиболее широко признанная версия происхождения митохондрий и пластид. Но попытки объяснить подобным образом происхождение других органелл и структур клетки не находят достаточных доказательств и наталкиваются на обоснованную критику.

Пероксисомы

Кристиан де Дюв обнаружил пероксисомы в 1965 году. Ему же принадлежит предположение, что пероксисомы были первыми эндосимбионтами эукариотической клетки, позволившими ей выживать при нарастающем количестве свободного молекулярного кислорода в земной атмосфере. Пероксисомы, однако, в отличие от митохондрий и пластид, не имеют ни генетического материала, ни аппарата для синтеза белка. Было показано, что эти органеллы формируются в клетке de novo в ЭПР и нет никаких оснований считать их эндосимбионтами.



Загрузка...