Кошки. Породы, стерилизация

Производные математический анализ. Решение производной для чайников: определение, как найти, примеры решений

Содержание статьи

МАТЕМАТИЧЕСКИЙ АНАЛИЗ, раздел математики, дающий методы количественного исследования разных процессов изменения; занимается изучением скорости изменения (дифференциальное исчисление) и определением длин кривых, площадей и объемов фигур, ограниченных кривыми контурами и поверхностями (интегральное исчисление). Для задач математического анализа характерно, что их решение связано с понятием предела.

Начало математическому анализу положил в 1665 И.Ньютон и (около 1675) независимо от него Г.Лейбниц, хотя важную подготовительную работу провели И.Кеплер (1571–1630), Ф.Кавальери (1598–1647), П.Ферма (1601–1665), Дж.Валлис (1616–1703) и И.Барроу (1630–1677).

Чтобы сделать изложение более живым, мы будем прибегать к языку графиков. Поэтому читателю, возможно, будет полезно заглянуть в статью АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ , прежде чем приступать к чтению данной статьи.

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ

Касательные.

На рис. 1 показан фрагмент кривой y = 2x x 2 , заключенный между x = –1 и x = 3. Достаточно малые отрезки этой кривой выглядят прямыми. Иначе говоря, если Р – произвольная точка этой кривой, то существует некоторая прямая, проходящая через эту точку и являющаяся приближением кривой в малой окрестности точки Р , причем чем меньше окрестность, тем лучше приближение. Такая прямая называется касательной к кривой в точке Р . Основная задача дифференциального исчисления заключается в построении общего метода, позволяющего находить направление касательной в любой точке кривой, в которой касательная существует. Нетрудно представить себе кривую с резким изломом (рис. 2). Если Р – вершина такого излома, то можно построить аппроксимирующую прямую PT 1 – справа от точки Р и другую аппроксимирующую прямую РТ 2 – слева от точки Р . Но не существует единственной прямой, проходящей через точку Р , которая одинаково хорошо приближалась к кривой в окрестности точки P как справа, так и слева, следовательно касательной в точке P не существует.

На рис. 1 касательная ОТ проведена через начало координат О = (0,0). Угловой коэффициент этой прямой равен 2, т.е. при изменении абсциссы на 1 ордината увеличивается на 2. Если x и y – координаты произвольной точки на ОТ , то, удаляясь от О на расстояние х единиц вправо, мы удаляемся от О на 2y единиц вверх. Следовательно, y /x = 2, или y = 2x . Это уравнение касательной ОТ к кривой y = 2x x 2 в точке О .

Необходимо теперь объяснить, почему из множества прямых, проходящих через точку О , выбрана именно прямая ОТ . Чем же прямая с угловым коэффициентом 2 отличается от других прямых? Существует один простой ответ, и нам трудно удержаться от искушения привести его, используя аналогию с касательной к окружности: касательная ОТ имеет с кривой только одну общую точку, тогда как любая другая невертикальная прямая, проходящая через точку О , пересекает кривую дважды. В этом можно убедиться следующим образом.

Поскольку выражение y = 2x x 2 можно получить вычитанием х 2 из y = 2x (уравнения прямой ОТ ), то значения y для графика оказываются меньше знаний y для прямой во всех точках, за исключением точки x = 0. Следовательно, график всюду, кроме точки О , расположен ниже ОТ , и эта прямая и график имеют только одну общую точку. Кроме того, если y = mx – уравнение какой-нибудь другой прямой, проходящей через точку О , то обязательно найдутся две точки пересечения. Действительно, mx = 2x x 2 не только при x = 0, но и при x = 2 – m . И только при m = 2 обе точки пересечения совпадают. На рис. 3 показан случай, когда m меньше 2, поэтому справа от О возникает вторая точка пересечения.

То, что ОТ – единственная невертикальная прямая, проходящая через точку О и имеющая с графиком лишь одну общую точку, не самое главное ее свойство. Действительно, если мы обратимся к другим графикам, то вскоре выяснится, что отмеченное нами свойство касательной в общем случае не выполняется. Например, из рис. 4 видно, что вблизи точки (1,1) график кривой y = x 3 хорошо аппроксимируется прямой РТ , имеющей однако, с ним более одной общей точки. Тем не менее, нам хотелось бы считать РТ касательной к этому графику в точке Р . Поэтому необходимо найти какой-то иной способ выделения касательной, чем тот, который так хорошо послужил нам в первом примере.

Предположим, что через точку О и произвольную точку Q = (h ,k ) на графике кривой y = 2x x 2 (рис. 5) проведена прямая (называемая секущей). Подставляя в уравнение кривой значения x = h и y = k , получаем, что k = 2h h 2 , следовательно, угловой коэффициент секущей равен

При очень малых h значение m близко к 2. Более того, выбирая h достаточно близким к 0, мы можем сделать m сколь угодно близким к 2. Можно сказать, что m «стремится к пределу», равному 2, когда h стремится к нулю, или что предел m равен 2 при h , стремящемся к нулю. Символически это записывается так:

Тогда касательная к графику в точке О определяется как прямая, проходящая через точку О , с угловым коэффициентом, равным этому пределу. Такое определение касательной применимо в общем случае.

Покажем преимущества этого подхода еще на одном примере: найдем угловой коэффициент касательной к графику кривой y = 2x x 2 в произвольной точке P = (x ,y ), не ограничиваясь простейшим случаем, когда P = (0,0).

Пусть Q = (x + h , y + k ) – вторая точка на графике, находящаяся на расстоянии h справа от Р (рис. 6). Требуется найти угловой коэффициент k /h секущей PQ . Точка Q находится на расстоянии

над осью х .

Раскрывая скобки, находим:

Вычитая из этого уравнения y = 2x x 2 , находим расстояние по вертикали от точки Р до точки Q :

Следовательно, угловой коэффициент m секущей PQ равен

Теперь, когда h стремится к нулю, m стремится к 2 – 2x ; последнюю величину мы и примем за угловой коэффициент касательной PT . (Тот же результат получится, если h принимает отрицательные значения, что соответствует выбору точки Q слева от P .) Заметим, что при x = 0 полученный результат совпадает с предыдущим.

Выражение 2 – 2x называется производной от 2x x 2 . В старину производную также называли «дифференциальным отношением» и «дифференциальным коэффициентом». Если выражением 2x x 2 обозначить f (x ), т.е.

то производную можно обозначить

Для того, чтобы узнать угловой коэффициент касательной к графику функции y = f (x ) в какой-нибудь точке, необходимо подставить в f ў (x ) соответствующее этой точке значение х . Таким образом, угловой коэффициент f ў (0) = 2 при х = 0, f ў (0) = 0 при х = 1 и f ў (2) = –2 при х = 2.

Производную также обозначают у ў , dy /dx , D х y и .

Тот факт, что кривая y = 2x x 2 вблизи данной точки практически неотличима от ее касательной в этой точке, позволяет говорить об угловом коэффициенте касательной как об «угловом коэффициенте кривой» в точке касания. Такие образом, мы можем утверждать, что угловой коэффициент рассматриваемой нами кривой имеет в точке (0,0) угловой коэффициент 2. Можно также сказать, что при x = 0 скорость изменения y относительно x равна 2. В точке (2,0) угловой коэффициент касательной (и кривой) равен –2. (Знак минус означает, что при возрастании x переменная y убывает.) В точке (1,1) касательная горизонтальна. Мы говорим, что кривая y = 2x x 2 имеет в этой точке стационарное значение.

Максимумы и минимумы.

Мы только что показали, что кривая f (x ) = 2x x 2 стационарна в точке (1,1). Так как f ў (x ) = 2 – 2x = 2(1 – x ), ясно, что при x , меньших 1, f ў (x ) положительна, и, следовательно, y возрастает; при x , больших 1, f ў (x ) отрицательна, и поэтому y убывает. Таким образом, в окрестности точки (1,1), обозначенной на рис. 6 буквой М , значение у растет до точки М , стационарно в точке М и убывает после точки М . Такая точка называется «максимумом», поскольку значение у в этой точке превосходит любые его значения в достаточно малой ее окрестности. Аналогично, «минимум» определяется как точка, в окрестности которой все значения y превосходят значение у в самой этой точке. Может также случиться, что хотя производная от f (x ) в некоторой точке и обращается в нуль, ее знак в окрестности этой точки не меняется. Такая точка, не являющаяся ни максимумом, ни минимумом, называется точкой перегиба.

В качестве примера найдем стационарную точку кривой

Производная этой функции равна

и обращается в нуль при x = 0, х = 1 и х = –1; т.е. в точках (0,0), (1, –2/15) и (–1, 2/15). Если х чуть меньше –1, то f ў (x ) отрицательна; если х чуть больше –1, то f ў (x ) положительна. Следовательно, точка (–1, 2/15) – максимум. Аналогично, можно показать, что точка (1, –2/15) – минимум. Но производная f ў (x ) отрицательна как до точки (0,0), так и после нее. Следовательно, (0,0) – точка перегиба.

Проведенное исследование формы кривой, а также то обстоятельство, что кривая пересекает ось х при f (x ) = 0 (т.е. при х = 0 или ) позволяют представить ее график примерно так, как показано на рис. 7.

В общем, если исключить необычные случаи (кривые, содержащие прямолинейные отрезки или бесконечное число изгибов), существуют четыре варианта взаимного расположения кривой и касательной в окрестности точки касания Р . (См . рис. 8, на котором касательная имеет положительный угловой коэффициент.)

1) По обе стороны от точки Р кривая лежит выше касательной (рис. 8,а ). В этом случае говорят, что кривая в точке Р выпукла вниз или вогнута.

2) По обе стороны от точки Р кривая расположена ниже касательной (рис. 8,б ). В этом случае говорят, что кривая выпукла вверх или просто выпукла.

3) и 4) Кривая располагается выше касательной по одну сторону от точки Р и ниже – по другую. В этом случае Р – точка перегиба.

Сравнивая значения f ў (x ) по обе стороны от Р с ее значением в точке Р , можно определить, с каким из этих четырех случаев приходится иметь дело в конкретной задаче.

Приложения.

Все изложенное выше находит важные приложения в различных областях. Например, если тело брошено вертикально вверх с начальной скоростью 200 футов в секунду, то высота s , на которой они будут находиться через t секунд по сравнению с начальной точкой составит

Действуя так же, как в рассмотренных нами примерах, находим

эта величина обращается в нуль при с. Производная f ў (x ) положительна до значения с и отрицательна по истечении этого времени. Следовательно, s возрастает до , затем становится стационарной, а после убывает. Таково общее описание движения брошенного вверх тела. Из него мы узнаем, когда тело достигает высшей точки. Далее, подставляя t = 25/4 в f (t ), мы получаем 625 футов, максимальную высоту подъема. В данной задаче f ў (t ) имеет физический смысл. Эта производная показывает скорость, с которой тело движется в момент времени t .

Рассмотрим теперь приложение другого типа (рис. 9). Из листа картона площадью 75 см 2 требуется изготовить коробку с квадратным дном. Каковы должны быть размеры этой коробки, чтобы она имела максимальный объем? Если х – сторона основания коробки и h – ее высота, то объем коробки равен V = x 2 h , а площадь поверхности равна 75 = x 2 + 4xh . Преобразуя уравнение, получаем:

Производная от V оказывается равной

и обращается в нуль при х = 5. Тогда

и V = 125/2. График функции V = (75x x 3)/4 показан на рис. 10 (отрицательные значения х опущены как не имеющие физического смысла в данной задаче).

Производные.

Важная задача дифференциального исчисления – создание методов, позволяющих быстро и удобно находить производные. Например, несложно посчитать, что

(Производная от постоянной, разумеется, равна нулю.) Нетрудно вывести общее правило:

где n – любое целое число или дробь. Например,

(На этом примере видно, как полезны дробные показатели степени.)

Приведем некоторые важнейшие формулы:

Существуют также следующие правила: 1) если каждая из двух функций g (x ) и f (x ) имеет производные, то производная их суммы равна сумме производных этих функций, а производная разности равна разности производных, т.е.

2) производная произведения двух функций вычисляется по формуле:

3) производная отношения двух функций имеет вид

4) производная функции, умноженной на константу, равна константе, умноженной на производную этой функции, т.е.

Часто бывает, что значения функции приходится вычислять поэтапно. Например, чтобы вычислить sin x 2 , нам необходимо сначала найти u = x 2 , а затем уже вычислить синус числа u . Производную таких сложных функций мы находим с помощью так называемого «цепного правила»:

В нашем примере f (u ) = sin u , f ў (u ) = cos u , следовательно,

Эти и другие, аналогичные им, правила позволяют сразу же выписывать производные многих функций.

Линейные аппроксимации.

То обстоятельство, что, зная производную, мы можем во многих случаях заменить график функции вблизи некоторой точки ее касательной в этой точке, имеет огромное значение, поскольку с прямыми легче работать.

Эта идея находит непосредственное приложение в вычислении приближенных значений функций. Например, довольно трудно вычислить значение при x = 1,033. Но можно воспользоваться тем, что число 1,033 близко к 1 и что . Вблизи x = 1 мы можем заменить график кривой касательной, не совершая при этом сколько-нибудь серьезной ошибки. Угловой коэффициент такой касательной равен значению производной (x 1/3)ў = (1/3)x –2/3 при x = 1, т.е. 1/3. Так как точка (1,1) лежит на кривой и угловой коэффициент касательной к кривой в этой точке равен 1/3, уравнение касательной имеет вид

На этой прямой при х = 1,033

Полученное значение y должно быть очень близко к истинному значению y ; и, действительно, оно лишь на 0,00012 больше истинного. В математическом анализе разработаны методы, позволяющие повышать точность такого рода линейных приближений. Эти методы обеспечивают надежность наших приближенных вычислений.

Только что описанная процедура наводит на мысль об одном полезном обозначении. Пусть P – точка, соответствующая на графике функции f переменной х , и пусть функция f (x ) дифференцируема. Заменим график кривой вблизи точки Р касательной к нему, проведенной в этой точке. Если х изменить на величину h , то ордината касательной изменится на величину h Ч f ў (x ). Если h очень мало, то последняя величина служит хорошим приближением к истинному изменению ординаты y графика. Если вместо h мы напишем символ dx (это не произведение!), а изменение ординаты y обозначим dy , то получим dy = f ў (x )dx , или dy /dx = f ў (x ) (см . рис. 11). Поэтому вместо Dy или f ў (x ) для обозначения производной часто используется символ dy /dx . Удобство этого обозначения зависит главным образом от явного появления цепного правила (дифференцирования сложной функции); в новых обозначениях эта формула выглядит следующим образом:

где подразумевается, что у зависит от u , а u в свою очередь зависит от х .

Величина dy называется дифференциалом у ; в действительности она зависит от двух переменных, а именно: от х и приращения dx . Когда приращение dx очень мало, величина dy близка к соответствующему изменению величины y . Но предполагать, что приращение dx мало, нет необходимости.

Производную функции y = f (x ) мы обозначили f ў (x ) или dy /dx . Часто оказывается возможным взять производную от производной. Результат называется второй производной от f (x ) и обозначается f ўў (x ) или d 2 y /dx 2 . Например, если f (x ) = x 3 – 3x 2 , то f ў (x ) = 3x 2 – 6x и f ўў (x ) = 6x – 6. Аналогичные обозначения используются и для производных более высокого порядка. Однако, чтобы избежать большого количества штрихов (равного порядку производной) четвертую производную (например) можно записать как f (4) (x ), а производную n -го порядка как f (n ) (x ).

Можно показать, что кривая в точке выпукла вниз, если вторая производная положительна, и выпукла вверх, если вторая производная отрицательна.

Если функция имеет вторую производную, то изменение величины y , соответствующее приращению dx переменной х , можно приближенно вычислить по формуле

Это приближение, как правило, лучше, чем то, которое дает дифференциал f ў (x )dx . Оно соответствует замене части кривой уже не прямой, а параболой.

Если у функции f (x ) существуют производные более высоких порядков, то

Остаточный член имеет вид

где x – некоторое число между x и x + dx . Приведенный выше результат называется формулой Тейлора с остаточным членом. Если f (x ) имеет производные всех порядков, то обычно R n ® 0 при n ® Ґ .

ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ

Площади.

При изучении площадей криволинейных плоских фигур открываются новые аспекты математического анализа. Такого рода задачи пытались решать еще древние греки, для которых определение, например, площади круга было одной из труднейших задач. Больших успехов в решении этой проблемы добился Архимед, которому также удалось найти площадь параболического сегмента (рис. 12). С помощью весьма сложных рассуждений Архимед доказал, что площадь параболического сегмента составляет 2/3 от площади описанного прямоугольника и, следовательно, в данном случае равна (2/3)(16) = 32/3. Как мы увидим в дальнейшем, этот результат можно легко получить методами математического анализа.

Предшественники Ньютона и Лейбница, главным образом Кеплер и Кавальери, решали задачи о вычислении площадей криволинейных фигур с помощью метода, который трудно назвать логически обоснованным, но который оказался чрезвычайно плодотворным. Когда же Валлис в 1655 соединил методы Кеплера и Кавальери с методами Декарта (аналитической геометрией) и воспользовался только что зародившейся алгеброй, сцена для появления Ньютона была полностью подготовлена.

Валлис разбивал фигуру, площадь которой требовалось вычислить, на очень узкие полоски, каждую из которых приближенно считал прямоугольником. Затем он складывал площади аппроксимирующих прямоугольников и в простейших случаях получал величину, к которой стремилась сумма площадей прямоугольников, когда число полосок стремилось к бесконечности. На рис. 13 показаны прямоугольники, соответствующие некоторому разбиению на полоски площади под кривой y = x 2 .

Основная теорема.

Великое открытие Ньютона и Лейбница позволило исключить трудоемкий процесс перехода к пределу суммы площадей. Это было сделано благодаря новому взгляду на понятие площади. Суть в том, что мы должны представить площадь под кривой как порожденную ординатой, движущейся слева направо и спросить, с какой скоростью изменяется заметаемая ординатами площадь. Ключ к ответу на этот вопрос мы получим, если рассмотрим два частных случая, в которых площадь заранее известна.

Начнем с площади под графиком линейной функции y = 1 + x , поскольку в этом случае площадь можно вычислить с помощью элементарной геометрии.

Пусть A (x ) – часть плоскости, заключенная между прямой y = 1 + x и отрезком OQ (рис. 14). При движении QP вправо площадь A (x ) возрастает. С какой скоростью? Ответить на этот вопрос нетрудно, так как мы знаем, что площадь трапеции равна произведению ее высоты на полусумму оснований. Следовательно,

Скорость изменения площади A (x ) определяется ее производной

Мы видим, что A ў (x ) совпадает с ординатой у точки Р . Случайно ли это? Попробуем проверить на параболе, изображенной на рис. 15. Площадь A (x ) под параболой у = х 2 в интервале от 0 до х равна A (x ) = (1 / 3)(x )(x 2) = x 3 /3. Скорость изменения этой площади определяется выражением

которое в точности совпадает с ординатой у движущейся точки Р .

Если предположить, что это правило выполняется в общем случае так, что

есть скорость изменения площади под графиком функции y = f (x ), то этим можно воспользоваться для вычислений и других площадей. На самом деле, соотношение A ў (x ) = f (x ) выражает фундаментальную теорему, которую можно было бы сформулировать следующим образом: производная, или скорость изменения площади как функции от х , равна значению функции f (x ) в точке х .

Например, чтобы найти площадь под графиком функции y = x 3 от 0 до х (рис. 16), положим

Возможный ответ гласит:

так как производная от х 4 /4 действительно равна х 3 . Кроме того, A (x ) равна нулю при х = 0, как и должно быть, если A (x ) действительно является площадью.

В математическом анализе доказывается, что другого ответа, кроме приведенного выше выражения для A (x ), не существует. Покажем, что это утверждение правдоподобно с помощью следующего эвристического (нестрогого) рассуждения. Предположим, что существует какое-либо второе решение В (x ). Если A (x ) и В (x ) «стартуют» одновременно с нулевого значения при х = 0 и все время изменяются с одинаковой скоростью, то их значения ни при каком х не могут стать различными. Они должны всюду совпадать; следовательно, существует единственное решение.

Как можно обосновать соотношение A ў (x ) = f (x ) в общем случае? На этот вопрос можно ответить, лишь изучая скорость изменения площади как функции от х в общем случае. Пусть m – наименьшее значение функции f (x ) в интервале от х до (x + h ), а M – наибольшее значение этой функции в том же интервале. Тогда приращение площади при переходе от х к (x + h ) должно быть заключено между площадями двух прямоугольников (рис. 17). Основания обоих прямоугольников равны h . Меньший прямоугольник имеет высоту m и площадь mh , больший, соответственно, М и Mh . На графике зависимости площади от х (рис. 18) видно, что при изменении абсциссы на h , значение ординаты (т.е. площадь) увеличивается на величину, заключенную между mh и Mh . Угловой коэффициент секущей на этом графике находится между m и M . Что происходит, когда h стремится к нулю? Если график функции y = f (x ) непрерывен (т.е. не содержит разрывов), то и М , и m стремятся к f (x ). Следовательно, угловой коэффициент A ў (x ) графика площади как функции от х равен f (x ). Именно к такому заключению и требовалось придти.

Лейбниц предложил для площади под кривой y = f (x ) от 0 до а обозначение

При строгом подходе этот так называемый определенный интеграл должен быть определен как предел некоторых сумм на манер Валлиса. Учитывая полученный выше результат, ясно, что этот интеграл вычисляется при условии, что мы можем найти такую функцию A (x ), которая обращается в нуль при х = 0 и имеет производную A ў (x ), равную f (x ). Нахождение такой функции принято называть интегрированием, хотя уместнее эту операцию было бы называть антидифференцированием, имея в виду, что она является в некотором смысле обратной дифференцированию. В случае многочлена интегрирование выполняется просто. Например, если

в чем нетрудно убедиться, продифференцировав A (x ).

Чтобы вычислить площадь А 1 под кривой y = 1 + x + x 2 /2, заключенную между ординатами 0 и 1, мы просто записываем

и, подставляя х = 1, получаем A 1 = 1 + 1 / 2 + 1 / 6 = 5 / 3 . Площадь A (x ) от 0 до 2 равна A 2 = 2 + 4 / 2 + 8 / 6 = 16 / 3 . Как видно из рис. 19, площадь, заключенная между ординатами 1 и 2, равна A 2 – A 1 = 11 / 3 . Обычно она записывается в виде определенного интеграла

Объемы.

Аналогичные рассуждения позволяют удивительно просто вычислять объемы тел вращения. Продемонстрируем это на примере вычисления объема шара, еще одной классической задачи, которую древним грекам, с помощью известных им методов, удалось решить с великим трудом.

Повернем часть плоскости, заключенной внутри четверти круга радиуса r , на угол 360° вокруг оси х . В результате мы получим полушарие (рис. 20), объем которого обозначим V (x ). Требуется определить, с какой скоростью возрастает V (x ) с увеличением x . Переходя от х к х + h , нетрудно убедиться в том, что приращение объема меньше, чем объем p (r 2 – x 2)h кругового цилиндра радиуса и высотой h , и больше, чем объем p [r 2 – (x + h ) 2 ]h цилиндра радиуса и высотой h . Следовательно, на графике функции V (x ) угловой коэффициент секущей заключен между p (r 2 – x 2) и p [r 2 – (x + h ) 2 ]. Когда h стремится к нулю, угловой коэффициент стремится к

При x = r мы получаем

для объема полушария, и, следовательно, 4p r 3 /3 для объема всего шара.

Аналогичный метод позволяет находить длины кривых и площади искривленных поверхностей. Например, если a (x ) – длина дуги PR на рис. 21, то наша задача состоит в вычислении a ў(x ). Воспользуемся на эвристическом уровне приемом, который позволяет не прибегать к обычному предельному переходу, необходимому при строгом доказательстве результата. Предположим, что скорость изменения функции а (x ) в точке Р такая же, какой она была бы при замене кривой ее касательной PT в точке P . Но из рис. 21 непосредственно видно, при шаге h вправо или влево от точки х вдоль РТ значение а (x ) меняется на

Следовательно, скорость изменения функции a (x ) составляет

Чтобы найти саму функцию a (x ), необходимо лишь проинтегрировать выражение, стоящее в правой части равенства. Оказывается, что для большинства функций выполнить интегрирование довольно трудно. Поэтому разработка методов интегрального исчисления составляет большую часть математического анализа.

Первообразные.

Каждую функцию, производная которой равна данной функции f (x ), называют первообразной (или примитивной) для f (x ). Например, х 3 /3 – первообразная для функции х 2 , так как (x 3 /3)ў = x 2 . Разумеется, х 3 /3 – не единственная первообразная функции х 2 , так как x 3 /3 + C также является производной для х 2 при любой константе С . Однако мы в дальнейшем условимся опускать такие аддитивные постоянные. В общем случае

где n – положительное целое число, так как (x n + 1/(n + 1))ў = x n . Соотношение (1) выполняется в еще более общем смысле, если n заменить любым рациональным числом k , кроме –1.

Произвольную первообразную функцию для заданной функции f (x ) принято называть неопределенным интегралом от f (x ) и обозначать его в виде

Например, так как (sin x )ў = cos x , справедлива формула

Во многих случаях, когда существует формула для неопределенного интеграла от заданной функции, ее можно найти в многочисленных широко публикуемых таблицах неопределенных интегралов. Табличными являются интегралы от элементарных функций (в их число входят степени, логарифмы, показательная функция, тригонометрические функции, обратные тригонометрические функции, а также их конечные комбинации, получаемые с помощью операций сложения, вычитания, умножения и деления). С помощью табличных интегралов можно вычислить интегралы и от более сложных функций. Существует много способов вычисления неопределенных интегралов; наиболее распространенный из них метод подстановки или замены переменной. Он состоит в том, что если мы хотим в неопределенном интеграле (2) заменить x на некоторую дифференцируемую функцию x = g (u ), то, чтобы интеграл не изменился, надо x заменить на g ў (u )du . Иначе говоря, справедливо равенство

(подстановка 2x = u , откуда 2dx = du ).

Приведем еще один метод интегрирования – метод интегрирования по частям. Он основан на известной уже формуле

Проинтегрировав левую и правую части, и учитывая, что

Эта формула называется формулой интегрирования по частям.

Пример 2. Требуется найти . Так как cos x = (sin x )ў , мы можем записать, что

Из (5), полагая u = x и v = sin x , получаем

А поскольку (–cos x )ў = sin x мы находим, что и

Следует подчеркнуть, что мы ограничились лишь весьма кратким введением в весьма обширный предмет, в котором накоплены многочисленные остроумные приемы.

Функции двух переменных.

В связи с кривой y = f (x ) мы рассмотрели две задачи.

1) Найти угловой коэффициент касательной к кривой в данной точке. Эта задача решается вычислением значения производной f ў (x ) в указанной точке.

2) Найти площадь под кривой над отрезком оси х , ограниченную вертикальными линиями х = а и х = b . Эта задача решается вычислением определенного интеграла .

Каждая из этих задач имеет аналог в случае поверхности z = f (x ,y ).

1) Найти касательную плоскость к поверхности в данной точке.

2) Найти объем под поверхностью над частью плоскости ху , ограниченной кривой С , а сбоку – перпендикулярами к плоскости xy , проходящими через точки граничной кривой С (см . рис. 22).

Следующие примеры показывают, как решаются эти задачи.

Пример 4. Найти касательную плоскость к поверхности

в точке (0,0,2).

Плоскость определена, если заданы две лежащие в ней пересекающиеся прямые. Одну из таких прямых (l 1) мы получим в плоскости xz (у = 0), вторую (l 2) – в плоскости yz (x = 0) (см . рис. 23).

Прежде всего, если у = 0, то z = f (x ,0) = 2 – 2x – 3x 2 . Производная по х , обозначаемая f ў x (x ,0) = –2 – 6x , при х = 0 имеет значение –2. Прямая l 1 , задаваемая уравнениями z = 2 – 2x , у = 0 – касательная к С 1 , линии пересечения поверхности с плоскостью у = 0. Аналогично, если х = 0, то f (0,y ) = 2 – y y 2 , и производная по у имеет вид

Так как f ў y (0,0) = –1, кривая С 2 – линия пересечения поверхности с плоскостью yz – имеет касательную l 2 , задаваемую уравнениями z = 2 – y , х = 0. Искомая касательная плоскость содержит обе прямые l 1 и l 2 и записывается уравнением

Это – уравнение плоскости. Кроме того, мы получаем прямые l 1 и l 2 , полагая, соответственно, у = 0 и х = 0.

В том, что уравнение (7) действительно задает касательную плоскость, на эвристическом уровне можно убедиться, если заметить, что это уравнение содержит члены первого порядка, входящие в уравнение (6), и что члены второго порядка можно представить в виде –. Так как это выражение отрицательно при всех значениях х и у , кроме х = у = 0, поверхность (6) всюду лежит ниже плоскости (7), кроме точки Р = (0,0,0). Можно сказать, что поверхность (6) выпукла вверх в точке Р .

Пример 5. Найти касательную плоскость к поверхности z = f (x ,y ) = x 2 – y 2 в начале координат 0.

На плоскости у = 0 имеем: z = f (x ,0) = x 2 и f ў x (x ,0) = 2x . На С 1 , линии пересечения, z = x 2 . В точке O угловой коэффициент равен f ў x (0,0) = 0. На плоскости х = 0 имеем: z = f (0,y ) = –y 2 и f ў y (0,y ) = –2y . На С 2 , линии пересечения, z = –y 2 . В точке O угловой коэффициент кривой С 2 равен f ў y (0,0) = 0. Так как касательные к С 1 и С 2 являются осями х и у , касательная плоскость, содержащая их, есть плоскость z = 0.

Однако в окрестности начала координат наша поверхность не находится по одну сторону от касательной плоскости. Действительно, кривая С 1 всюду, за исключением точки 0, лежит выше касательной плоскости, а кривая С 2 – соответственно ниже ее. Поверхность пересекает касательную плоскость z = 0 по прямым у = х и у = –х . Про такую поверхность говорят, что она имеет седловую точку в начале координат (рис. 24).

Частные производные.

В предыдущих примерах мы использовали производные от f (x ,y ) по х и по у . Рассмотрим теперь такие производные в более общем плане. Если у нас имеется функция двух переменных, например, F (x ,y ) = x 2 – xy , то мы можем определить в каждой точке две ее «частные производные», одну – дифференцируя функцию по х и фиксируя у , другую – дифференцируя по у и фиксируя х . Первая из этих производных обозначается как f ў x (x ,y ) или ¶ f x ; вторая – как f f ў y . Если обе смешанные производные (по х и у , по у и х ) непрерывны, то ¶ 2f x y = ¶ 2f y x ; в нашем примере ¶ 2f x y = ¶ 2f y x = –1.

Частная производная f ў x (x ,y ) указывает скорость изменения функции f в точке (x ,y ) в направлении возрастания х , а f ў y (x ,y ) – скорость изменения функции f в направлении возрастания у . Скорость изменения функции f в точке (х ,у ) в направлении прямой, составляющей угол q с положительным направлением оси х , называется производной от функции f по направлению; ее величина представляет собой комбинацию двух частных производных от функции f в касательной плоскости почти равно (при малых dx и dy ) истинному изменению z на поверхности, но вычислить дифференциал обычно бывает легче.

Уже рассмотренная нами формула из метода замены переменной, известная как производная сложной функции или цепное правило, в одномерном случае, когда у зависит от х , а х зависит от t , имеет вид:

Для функций двух переменных аналогичная формула имеет вид:

Понятия и обозначения частного дифференцирования нетрудно обобщить на более высокие размерности. В частности, в случае если поверхность задана неявно уравнением f (x ,y ,z ) = 0, уравнению касательной плоскости к поверхности можно придать более симметричную форму: уравнение касательной плоскости в точке (x (x 2 /4)], затем интегрируется по х от 0 до 1. Окончательный результат равен 3/4.

Формулу (10) можно интерпретировать и как так называемый двойной интеграл, т.е. как предел суммы объемов элементарных «клеток». Каждая такая клетка имеет основание D x D y и высоту, равную высоте поверхности над некоторой точкой прямоугольного основания (см . рис. 26). Можно показать, что обе точки зрения на формулу (10) эквивалентны. Двойные интегралы используются для нахождения центров тяжести и многочисленных моментов, встречающихся в механике.

Более строгое обоснование математического аппарата.

До сих пор мы излагали понятия и методы математического анализа на интуитивном уровне и, не колеблясь, прибегали к геометрическим фигурам. Нам осталось кратко рассмотреть более строгие методы, появившиеся в 19 и 20-м столетиях.

В начале 19 в., когда эпоха штурма и натиска в «создании математического анализа» завершилась, на первый план вышли вопросы его обоснования. В работах Абеля, Коши и ряда других выдающихся математиков были точно определены понятия «предела», «непрерывной функции», «сходящегося ряда». Это было необходимо для того, чтобы внести логический порядок в основание математического анализа с тем, чтобы сделать его надежным инструментом исследования. Потребность в тщательном обосновании стала еще более очевидной после открытия в 1872 Вейерштрассом всюду непрерывных, но нигде не дифференцируемых функций (график таких функций в каждой своей точке имеет излом). Этот результат произвел ошеломляющее впечатление на математиков, поскольку явно противоречил их геометрической интуиции. Еще более поразительным примером ненадежности геометрической интуиции стала построенная Д.Пеано непрерывная кривая, целиком заполняющая некоторый квадрат, т.е. проходящая через все его точки. Эти и другие открытия вызвали к жизни программу «арифметизации» математики, т.е. придания ей большей надежности путем обоснования всех математических понятий с помощью понятия числа. Почти пуританское воздержание от наглядности в работах по основаниям математики имело свое историческое оправдание.

По современным канонам логической строгости недопустимо говорить о площади под кривой y = f (x ) и над отрезком оси х , даже если f – непрерывная функция, не определив предварительно точный смысл термина «площадь» и не установив, что определенная таким образом площадь действительно существует. Эта задача была успешно решена в 1854 Б.Риманом, который дал точное определение понятия определенного интеграла. С тех пор идея суммирования, стоящая за понятием определенного интеграла, была предметом многих глубоких исследований и обобщений. В результате сегодня удается придать смысл определенному интегралу, даже если подынтегральная функция является повсюду разрывной. Новые понятия интегрирования, в создание которых большой вклад внес А.Лебег (1875–1941) и другие математики, приумножили мощь и красоту современного математического анализа.

Вряд ли было бы уместно входить в детали всех этих и других понятий. Ограничимся лишь тем, что приведем строгие определения предела и определенного интеграла.

В заключение скажем, что математический анализ, являясь крайне ценным инструментом в руках ученого и инженера, и сегодня привлекает внимание математиков как источник плодотворных идей. В то же время современное развитие как будто свидетельствует и о том, что математический анализ все более поглощается такими доминирующими в 20 в. разделами математики, как абстрактная алгебра и топология.

Математический анализ.

Практикум.

Для студентов ВУЗов по специальности:

«Государственное и муниципальное управление»

Т.З. Павлова

Колпашево 2008


Глава 1. Введение в анализ

1.1 Функции. Общие свойства

1.2 Теория пределов

1.3 Непрерывность функции

2.1 Определение производной

2.4 Исследование функций

2.4.1 План полного исследования функции

2.4.2 Примеры исследования функции

2.4.3. Наибольшее и наименьшее значение функции на отрезке

2.5 Правило Лопиталя

3.1 Неопределенный интеграл

3.1.1 Определения и свойства

3.1.2 Таблица интегралов

3.1.3 Основные методы интегрирования

3.2 Определенный интеграл

3.2.2 Методы вычисления определенного интеграла

Глава 4. Функции нескольких переменных

4.1 Основные понятия

4.2 Пределы и непрерывность функций нескольких переменных

4.3.3 Полный дифференциал и его применение к приближенным вычислениям

Глава 5. Классические методы оптимизации

6.1 Функция полезности.

6.2 Линии безразличия

6.3 Бюджетное множество

Задания для домашней контрольной работы

1.1 Функции. Общие свойства

Числовая функция определена на множестве D действительных чисел, если каждому значению переменной поставлено в соответствие некоторое вполне определенное действительное значение переменной y, где D – область определения функции.

Аналитическое представление функции:

в явном виде: ;

в неявном виде: ;

в параметрической форме:

разными формулами в области определения :

Свойства.

Четная функция: . Например, функция – четная, т.к. .

Нечетная функция: . Например, функция – нечетная, т.к. .

Периодическая функция: , где T – период функции, . Например, тригонометрические функции.

Монотонная функция. Если для любых из области определения – функция возрастающая, – убывающая. Например, – возрастающая, а – убывающая.

Ограниченная функция. Если существует такое число M, что . Например, функции и , т.к. .

Пример 1. Найти область определения функций.

+ 2 – 3 +

1.2 Теория пределов

Определение 1 . Пределом функции при называется число b, если для любого ( – сколь угодно малое положительное число) можно найти такое значение аргумента , начиная с которого выполняется неравенство .

Обозначение: .

Определение 2 . Пределом функции при называется число b, если для любого ( - сколь угодно малое положительное число) существует такое положительное число , что для всех значений x, удовлетворяющих неравенству выполняется неравенство .

Обозначение: .

Определение 3. Функция называется бесконечно малой при или , если или .

Свойства.

1. Алгебраическая сумма конечного числа бесконечно малых величин есть величина бесконечно малая.

2. Произведение бесконечно малой величины на ограниченную функцию (постоянную, другую бесконечно малую величину) есть величина бесконечно малая.

3. Частное от деления бесконечно малой величины на функцию, предел которой отличен от нуля, есть величина бесконечно малая.

Определение 4. Функция называется бесконечно большой при , если .

Свойства.

1. Произведение бесконечно большой величины на функцию, предел которой отличен от нуля, есть величина бесконечно большая.

2. Сумма бесконечно большой величины и ограниченной функции есть величина бесконечно большая.

3. Частное от деления бесконечно большой величины на функцию, имеющую предел, есть величина бесконечно большая.

Теорема. (Связь между бесконечно малой величиной и бесконечно большой величиной.) Если функция бесконечно малая при (), то функция является бесконечно большой величиной при (). И, обратно, если функция бесконечно большая при (), то функция является бесконечно малой величиной при ().

Теоремы о пределах.

1. Функция не может иметь более одного предела.

2. Предел алгебраической суммы нескольких функций равен алгебраической сумме пределов этих функций:

3. Предел произведения нескольких функций равен произведению пределов этих функций:

4. Предел степени равен степени предела:

5. Предел частного равен частному пределов, если предел делителя существует:

.

6. Первый замечательный предел.

Следствия:

7. Второй замечательный предел:


Следствия:

Эквивалентные бесконечно малые величины при :

Вычисление пределов.

При вычислении пределов используют основные теоремы о пределах, свойства непрерывных функций и правила, вытекающие из этих теорем и свойств.

Правило 1. Чтобы найти предел в точке функции, непрерывной в этой точке, надо в функцию, стоящую под знаком предела, вместо аргумента x подставить его предельное значение .

Пример 2. Найти

Правило 2. Если при отыскании предела дроби предел знаменателя равен нулю, а предел числителя отличен от нуля, то предел такой функции равен .


Пример 3. Найти

Правило 3. Если при отыскании предела дроби предел знаменателя равен , а предел числителя отличен от нуля, то предел такой функции равен нулю.

Пример 4. Найти

Часто подстановка предельного значения аргумента приводит к неопределенным выражениям вида

.

Нахождение предела функции в этих случаях называется раскрытием неопределенности. Для раскрытия неопределенности приходится, прежде чем перейти к пределу, проводить преобразование данного выражения. Для раскрытия неопределенностей используют различные приемы.

Правило 4 . Неопределенность вида раскрывается путем преобразования подпредельной функции т.о., чтобы в числителе и знаменателе выделить множитель, предел которого равен нулю, и, сократив на него дробь, найти предел частного. Для этого числитель и знаменатель либо раскладывают на множители, либо домножают на сопряженные числителю и знаменателю выражения.


Правило 5. Если подпредельное выражение содержит тригонометрические функции, тогда, чтобы раскрыть неопределенность вида используют первый замечательный предел.

.

Правило 6 . Чтобы раскрыть неопределенность вида при , числитель и знаменатель подпредельной дроби необходимо разделить на высшую степень аргумента и находить далее предел частного.

Возможны результаты:

1) искомый предел равен отношению коэффициентов при старших степенях аргумента числителя и знаменателя, если эти степени одинаковы;

2) предел равен бесконечности, если степень аргумента числителя выше степени аргумента знаменателя;

3) предел равен нулю, если степень аргумента числителя ниже степени аргумента знаменателя.

а)

т.к.

Степени равны, значит, предел равен отношению коэффициентов при старших степенях, т.е. .

б)

Степень числителя , знаменателя – 1, значит, предел равен

в)


Степень числителя 1, знаменателя – , значит, предел равен 0.

Правило 7 . Чтобы раскрыть неопределенность вида , числитель и знаменатель подпредельной дроби необходимо домножить на сопряженное выражение.

Пример 10.

Правило 8 . Чтобы раскрыть неопределенность вида используют второй замечательный предел и его следствия.

Можно доказать, что

Пример 11.

Пример 12.

Пример 13.

Правило 9 . При раскрытии неопределенностей, подпредельная функция которых содержит б.м.в., необходимо заменить пределы этих б.м. на пределы б.м., эквивалентных им.

Пример 14.

Пример 15.

Правило 10. Правило Лопиталя (см. 2.6).

1.3 Непрерывность функции

Функция непрерывна в точке , если предел функции при стремлении аргумента к a, существует и равен значению функции в этой точке.

Эквивалентные условия:

1. ;

3.

Классификация точек разрыва:

разрыв I рода

Устранимый – односторонние пределы существуют и равны;

Неустранимый (скачок) – односторонние пределы не равны;

разрыв II рода: предел функции в точке не существует.

Пример 16. Установить характер разрыва функции в точке или доказать непрерывность функции в этой точке.

при функция не определена, следовательно, она не непрерывна в этой точке. Т.к. и, соответственно, , то – точка устранимого разрыва первого рода.

б)

по сравнению с заданием (а) функция доопределена в точке так, что , значит, данная функция непрерывна в данной точке.

При функция не определена;


.

Т.к. один из односторонних пределов бесконечен, то – точка разрыва второго рода.

Глава 2. Дифференциальное исчисление

2.1 Определение производной

Определение производной

Производная или от данной функции есть предел отношения приращения функции к соответствующему приращению аргумента, когда приращение аргумента стремится к нулю:

Или .

Механический смысл производной – скорость изменения функции. Геометрический смысл производной – тангенс угла наклона касательной к графику функции:

2.2 Основные правила дифференцирования

Наименование Функция Производная
Умножение на постоянный множитель
Алгебраическая сумма двух функций
Произведение двух функций
Частное двух функций
Сложная функция

Производные основных элементарных функций

№ п/п Наименование функции Функция и её производная
1 константа
2

степенная функция

частные случаи

3

показательная функция

частный случай

4

логарифмическая функция

частный случай

5

тригонометрические функции

6

обратные

тригонометрические

б)

2.3 Производные высших порядков

Производная второго порядка функции

Производная второго порядка функции :

Пример 18.

а) Найти производную второго порядка функции .

Решение. Найдем сначала производную первого порядка .

От производной первого порядка возьмем еще раз производную .


Пример 19. Найти производную третьего порядка функции .

2.4 Исследование функций

2.4.1 План полного исследования функции:

План полного исследования функции:

1. Элементарное исследование:

Найти область определения и область значений;

Выяснить общие свойства: четность (нечетность), периодичность;

Найти точки пересечения с осями координат;

Определить участки знакопостоянства.

2. Асимптоты:

Найти вертикальные асимптоты , если ;

Найти наклонные асимптоты: .

Если любое число, то – горизонтальные асимптоты.

3. Исследование с помощью :

Найти критические точки, те. точки в которых или не существует;

Определить интервалы возрастания, те. промежутки, на которых и убывания функции – ;

Определить экстремумы: точки, при переходе через которые меняет знак с «+» на «–», являются точками максимума, с «–» на «+» – минимума.

4. Исследование с помощью :

Найти точки, в которых или не существует;

Найти участки выпуклости, т.е. промежутки, на которых и вогнутости – ;

Найти точки перегиба, т.е. точки при переходе через которые меняет знак.

1. Отдельные элементы исследования наносятся на график постепенно, по мере их нахождения.

2. Если появляются затруднения с построением графика функции, то находятся значения функции в некоторых дополнительных точках.

3. Целью исследования является описание характера поведения функции. Поэтому строится не точный график, а его приближение, на котором четко обозначены найденные элементы (экстремумы, точки перегиба, асимптоты и т.д.).

4. Строго придерживаться приведенного плана необязательно; важно не упустить характерные элементы поведения функции.

2.4.2 Примеры исследования функции:

1)

2) Функция нечетная:

.

3) Асимптоты.

– вертикальные асимптоты, т.к.


Наклонная асимптота .

5)

– точка перегиба.


2) Функция нечетная:

3) Асимптоты: Вертикальных асимптот нет.

Наклонные:

– наклонные асимптоты

4) – функция возрастает.

– точка перегиба.

Схематичный график данной функции:

2) Функция общего вида

3) Асимптоты

– наклонных асимптот нет

– горизонтальная асимптота при


– точка перегиба

Схематичный график данной функции:

2) Асимптоты.

– вертикальная асимптота, т.к.

– наклонных асимптот нет

, – горизонтальная асимптота

Схематичный график данной функции:


2) Асимптоты

– вертикальная асимптота при , т.к.

– наклонных асимптот нет

, – горизонтальная асимптота

3) – функция убывает на каждом из промежутков.

Схематичный график данной функции:


Чтобы найти наибольшее и наименьшее значение функции на отрезке можно воспользоваться схемой:

1. Найти производную функции .

2. Найти критические точки функции, в которых или не существует.

3. Найти значение функции в критических точках, принадлежащих заданному отрезку и на его концах и выбрать из них наибольшее и наименьшее .

Пример. Найти наименьшее и наибольшее значение функции на данном отрезке.

25. на промежутке

2) – критические точки

26. на промежутке .

Производная не существует при , но 1 не принадлежит данному промежутку. Функция убывает на промежутке , значит, наибольшего значения нет, а наименьшее значение .

2.5 Правило Лопиталя

Теорема. Предел отношения двух бесконечно малых или бесконечно больших функций равен пределу отношения их производных (конечному или бесконечному), если последний существует в указанном смысле.

Т.е. при раскрытии неопределенностей вида или можно использовать формулу:

.

27.

Глава 3. Интегрально исчисление

3.1 Неопределенный интеграл

3.1.1 Определения и свойства

Определение 1. Функция называется первообразной для , если .

Определение 2. Неопределенным интегралом от функции f(x) называется совокупность всех первообразных для этой функции.

Обозначение: , где c- произвольная постоянная.

Свойства неопределенного интеграла

1. Производная неопределенного интеграла:

2. Дифференциал неопределенного интеграла:

3. Неопределенный интеграл от дифференциала:

4. Неопределенный интеграл от суммы (разности) двух функций:

5. Вынесение постоянного множителя за знак неопределенного интеграла:

3.1.2 Таблица интегралов

.1.3 Основные методы интегрирования

1. Использование свойств неопределенного интеграла.

Пример 29.

2. Подведение под знак дифференциала.

Пример 30.

3. Метод замены переменной:

а) замена в интеграле


где - функция, интегрируемая легче, чем исходная; - функция, обратная функции ; - первообразная функции .

Пример 31.

б) замена в интеграле вида:

Пример 32.


Пример 33.

4. Метод интегрирования по частям:

Пример 34.

Пример 35.

Возьмем отдельно интеграл


Вернемся к нашему интегралу:

3.2 Определенный интеграл

3.2.1 Понятие определенного интеграла и его свойства

Определение. Пусть на некотором интервале задана непрерывная функция . Построим ее график.

Фигура, ограниченная сверху кривой , слева и справа прямыми и снизу отрезком оси абсцисс между точками a и b, называется криволинейной трапецией.

S – область – криволинейная трапеция.

Разделим интервал точками и получим:

Интегральная сумма:


Определение. Определенным интегралом называется предел интегральной суммы.

Свойства определенного интеграла:

1. Постоянный множитель можно выносить за знак интеграла:

2. Интеграл от алгебраической суммы двух функций равен алгебраической сумме интегралов этих функций:

3. Если отрезок интегрирования разбит на части, то интеграл на всем отрезке равен сумме интегралов для каждой из возникших частей, т.е. при любых a, b, c:

4. Если на отрезке , то и


5. Пределы интегрирования можно менять местами, при этом меняется знак интеграла:

6.

7. Интеграл в точке равен 0:

8.

9. (“о среднем”) Пусть y = f(x) – функция, интегрируемая на . Тогда , где , f(c) – среднее значение f(x) на :

10. Формула Ньютона-Лейбница

,

где F(x) – первообразная для f(x).

3.2.2 Методы вычисления определенного интеграла.

1. Непосредственное интегрирование

Пример 35.


а)

б)

в)

д)

2. Замена переменных под знаком определенного интеграла .

Пример 36.

2. Интегрирование по частям в определенном интеграле .

Пример 37.

а)

б)

д)

3.2.3 Приложения определенного интеграла

Характеристика Вид функции Формула
в декартовых координатах
площадь криволинейного сектора в полярных координатах
площадь криволинейной трапеции в параметрической форме

длина дуги

в декартовых координатах

длина дуги

в полярных координатах

длина дуги

в параметрической форме

объём тела

вращения

в декартовых координатах

объём тела с заданным поперечным

сечением

Пример 38. Вычислить площадь фигуры, ограниченной линиями: и .

Решение: Найдем точки пересечения графиков данных функций. Для этого приравняем функции и решим уравнение

Итак, точки пересечения и .


Площадь фигуры найдем, используя формулу

.

В нашем случае

Ответ: площадь равна (квадратных единиц).

4.1 Основные понятия

Определение. Если каждой паре независимых друг от друга чисел из некоторого множества по какому-либо правилу ставится в соответствие одно или несколько значений переменной z, то переменная z называется функцией двух переменных.

Определение. Областью определения функции z называется совокупность пар , при которых функция z существует.

Область определения функции двух переменных представляет собой некоторое множество точек на координатной плоскости Oxy. Координата z называется аппликатой, и тогда сама функция изображается в виде некоторой поверхности в пространстве E 3 . Например:

Пример 39. Найти область определения функции.

а)

Выражение, стоящее в правой части имеет смысл только при . Значит, область определения данной функции есть совокупность всех точек, лежащих внутри и на границе круга радиуса R с центром в начале координат.

Область определения данной функции – все точки плоскости , кроме точек прямых , т.е. осей координат.

Определение. Линии уровня функции – это семейство кривых на координатной плоскости , описываемое уравнениями вида .

Пример 40. Найти линии уровня функции .

Решение. Линии уровня данной функции – это семейство кривых на плоскости , описываемое уравнением

Последнее уравнение описывает семейство окружностей с центром в точке О 1 (1, 1) радиуса . Поверхность вращения (параболоид), описываемая данной функцией, становится «круче» по мере ее удаления от оси, которая задается уравнениями x = 1, y = 1. (Рис. 4)


4.2 Пределы и непрерывность функций нескольких переменных.

1. Пределы.

Определение. Число A называется пределом функции при стремлении точки к точке , если для каждого сколь угодно малого числа найдется такое число , что для любой точки верно условие , также верно условие . Записывают: .

Пример 41. Найти пределы:


т.е. предел зависит от , а, значит, он не существует.

2. Непрерывность.

Определение. Пусть точка принадлежит области определения функции . Тогда функция называется непрерывной в точке , если

(1)

причем точка стремится к точке произвольным образом.

Если в какой-либо точке условие (1) не выполняется, то эта точка называется точкой разрыва функции . Это может быть в следующих случаях:

1) Функция не определена в точке .

2) Не существует предел .

3) Этот предел существует, но он не равен .

Пример 42. Определить, является ли данная функция непрерывной в точке , если .


Получили, что значит, данная функция непрерывна в точке .

предел зависит от k, т.е. он в данной точке не существует, а значит, функция имеет в этой точке разрыв.

4.3 Производные и дифференциалы функций нескольких переменных

4.3.1 Частные производные первого порядка

Частная производная функции по аргументу x является обыкновенной производной функции одной переменной x при фиксированном значении переменной y и обозначается:

Частная производная функции по аргументу y является обыкновенной производной функции одной переменной y при фиксированном значении переменной x и обозначается:


Пример 43. Найти частные производные функций.

4.3.2 Частные производные второго порядка

Частные производные второго порядка – это частные производные от частных производных первого порядка. Для функции двух переменных вида возможны четыре вида частных производных второго порядка:

Частные производные второго порядка, в которых дифференцирование производится по разным переменным, называют смешанными производными. Смешанные производные второго порядка дважды дифференцируемой функции равны.

Пример 44. Найти частные производные второго порядка.


4.3.3 Полный дифференциал и его применение к приближенным вычислениям.

Определение. Дифференциал первого порядка функции двух переменных находится по формуле

.

Пример 45. Найти полный дифференциал для функции .

Решение. Найдем частные производные:

.

При малых приращениях аргументов x и y функция получает приращение , приблизительно равное dz, т.е. .

Формула для нахождения приближенного значения функции в точке , если известно ее точное значение в точке :

Пример 46. Найти .

Решение. Пусть ,

Тогда используем формулу

Ответ. .

Пример 47. Вычислить приближенно .

Решение. Рассмотрим функцию . Имеем

Пример 48. Вычислить приближенно .

Решение. Рассмотрим функцию . Получим:

Ответ. .

4.3.4 Дифференцирование неявной функции

Определение. Функция называется неявной, если она задается уравнением , не разрешимым относительно z.

Частные производные такой функции находятся по формулам:

Пример 49. Найти частные производные функции z, заданной уравнением .

Решение.


Определение. Функция называется неявной, если она задается уравнением , не разрешимым относительно y.

Производная такой функции находится по формуле:

.

Пример 50. Найти производные данных функций.


5.1 Локальный экстремум функции нескольких переменных

Определение 1. Функция имеет максимум в точке , если

Определение 2. Функция имеет минимум в точке , если для всех точек достаточно близких к точке и отличных от нее.

Необходимое условие экстремума. Если функция достигает экстремума в точке , то частные производные от функции обращаются в нуль или не существуют в этой точке.

Точки, в которых частные производные обращаются в нуль или не существуют, называются критическими.

Достаточный признак экстремума. Пусть функция определена в некоторой окрестности критической точки и имеет в этой точке непрерывные частные производные второго порядка

1) имеет локальный максимум в точке , если и ;

2) имеет локальный минимум в точке , если и ;

3) не имеет локального экстремума в точке , если ;

Схема исследования на экстремум функции двух переменных.

1. Найти частные производные функции : и .

2. Решить систему уравнений , и найти критические точки функции.

3. Найти частные производные второго порядка, вычислить их значения в критических точках и с помощью достаточного условия сделать вывод о наличии экстремумов.

4. Найти экстремумы функции.

Пример 51. Найти экстремумы функции .

1) Найдем частные производные .

2) Решим систему уравнений

4) Найдем частные производные второго порядка и их значения в критических точках: . В точке получим:

значит, в точке экстремума нет. В точке получим:


значит, в точке минимум.

5.2 Глобальный экстремум (наибольшее и наименьшее значение функции)

Наибольшее и наименьшее значения функции нескольких переменных, непрерывной на некотором замкнутом множестве, достигаются или в точках экстремума, или на границе множества.

Схема нахождения наибольшего и наименьшего значений.

1) Найти критические точки, лежащие внутри области, вычислить значение функции в этих точках.

2) Исследовать функцию на границе области; если граница состоит из нескольких различных линий, то исследование необходимо провести для каждого участка отдельно.

3) Сравнить полученные значения функции и выбрать наибольшее и наименьшее.

Пример 52. Найти наибольшее и наименьшее значения функции в прямоугольнике .

Решение. 1) Найдем критические точки функции, для этого найдем частные производные: , и решим систему уравнений:

Получили критическую точку A. Полученная точка лежит внутри заданной области,

Границу области составляют четыре отрезка: и. найдем наибольшее и наименьшее значение функции на каждом отрезке.

4) Сравним полученные результаты и получим, что в точках .

Глава 6. Модель потребительского выбора

Будем полагать, что имеется n различных товаров. Тогда некоторый набор товаров будем обозначать через n-мерный вектор , где – количество i-того товара. Множество всех наборов товаров Xназывается пространством.

Выбор индивида-потребителя характеризуется отношением предпочтения: считается, что потребитель может сказать о любых двух наборах, какой более желателен, или он не видит между ними разницы. Отношение предпочтения транзитивно: если набор предпочтительнее набора , а набор предпочтительнее набора , то набор предпочтительнее набора . Будем полагать, что поведение потребителя полностью описывается аксиомой индивида-потребителя: каждый индивид-потребитель принимает решение о потреблении, покупках и т.п., исходя из своей системы предпочтений.

6.1 Функция полезности

На множестве потребительских наборов Xопределена функция , значение которой на потребительском наборе равно потребительской оценке индивида для этого набора. Функция называется функцией полезности потребителя или функцией потребительского предпочтения. Т.е. каждый потребитель имеет свою функцию полезности. Но все множество потребителей можно разделить на определенные классы потребителей (по возрасту, имущественному положению и т.п.) и каждому классу приписать некоторую, может быть, осредненную функцию полезности.

Т.о., функция является потребительской оценкой или уровнем удовлетворения потребностей индивида при приобретении данного набора . Если набор предпочтительнее набора для данного индивида, то .

Свойства функции полезности.

1.

Первые частные производные функции полезности называются предельными полезностями продуктов. Из этого свойства следует, что возрастание потребления одного продукта при неизменном потреблении других продуктов приводит к росту потребительской оценки. Вектор является градиентом функции , он показывает направление наибольшего роста функции. Для функции ее градиент представляет собой вектор предельных полезностей продуктов.

2.

Т.е. предельная полезность любого товара уменьшается с ростом потребления.

3.

Т.е. предельная полезность каждого продукта увеличивается с ростом количества другого продукта.

Некоторые виды функций полезности.

1) Неоклассическая: .

2) Квадратическая: , где матрица отрицательно определена и для .

3) Логарифмическая функция: .

6.2 Линии безразличия

В прикладных задачах и моделях потребительского выбора часто используется частный случай набора из двух товаров, т.е. когда функция полезности зависит от двух переменных. Линия безразличия – это линия, соединяющая потребительские наборы, имеющие один и тот же уровень удовлетворения потребностей индивида. По сути своей линии безразличия представляют собой линии уровня функции . Уравнения линий безразличия: .

Основные свойства линий безразличия.

1. Линии безразличия, соответствующие разным уровням удовлетворения потребностей, не касаются и не пересекаются.

2. Линии безразличия убывают.

3. Линии безразличия выпуклы вниз.

Из свойства 2 следует важное приближенное равенство .

Это соотношение показывает, на сколько индивид должен увеличить (уменьшить) потребление второго продукта при уменьшении (увеличении) потребления первого продукта на одну единицу без изменения уровня удовлетворения своих потребностей. Отношение называется нормой замены первого продукта вторым, а величина – предельной нормой замены первого продукта вторым.

Пример 53. Если предельная полезность первого товара равна 6, а второго – 2, то при уменьшении потребления первого товара на единицу нужно увеличить потребление второго товара на 3 единицы при том же уровне удовлетворения потребностей.

6.3 Бюджетное множество

Пусть – вектор цен на набор из n продуктов ; I – доход индивида, который он готов потратить на приобретение набора продуктов . Множество наборов товаров стоимостью не более Iпри данных ценах называется бюджетным множеством B. При этом множество наборов стоимостью I называется границей G бюджетного множества B. Т.о. множество B ограничено границей G и естественными ограничениями .

Бюджетное множество описывается системой неравенств:


Для случая набора из двух товаров бюджетное множество B(рис. 1) представляет собой треугольник в системе координат , ограниченный осями координат и прямой .

6.4 Теория потребительского спроса

В теории потребления полагается, что потребитель всегда стремится максимизировать свою полезность и единственным ограничением для него является ограниченность дохода I, который он может потратить на покупку набора товаров. В общем виде задача потребительского выбора (задача рационального поведения потребителя на рынке) формулируется следующим образом: найти потребительский набор , который максимизирует его функцию полезности при заданном бюджетном ограничении. Математическая модель этой задачи:

В случае набора из двух товаров:

Геометрически решение этой задачи – это точка касания границы бюджетного множества G и линии безразличия.


Решение этой задачи сводится к решению системы уравнений:

(1)

Решение этой системы является решением задачи потребительского выбора.

Решение задачи потребительского выбора называется точкой спроса. Эта точка спроса зависит от цен и дохода I. Т.е. точка спроса является функцией спроса. В свою очередь функция спроса – это набор n функций, каждая из которых зависит от аргумента:

Эти функции называются функциями спроса соответствующих товаров.

Пример 54. Для набора из двух товаров на рынке, известных ценах на них и и дохода I найти функции спроса, если функция полезности имеет вид .

Решение. Продифференцируем функцию полезности:

.

Подставим полученные выражения в (1) и получим систему уравнений:

В данном случае расход на каждый товар составит половину дохода потребителя, а количество приобретенного товара равно затраченной на него сумме, поделенной на цену товара.

Пример 55. Пусть функция полезности для первого товара , второго ,

цена первого товара , цена второго . Доход . Какое количество товара должен приобрести потребитель, чтобы максимизировать полезность?

Решение. Найдем производные функций полезности, подставим в систему (1) и решим ее:


Этот набор товаров является оптимальным для потребителя с точки зрения максимизации полезности.


Контрольная работа должна быть выполнена в соответствии с вариантом, выбираемым по последней цифре номера зачетной книжки в отдельной тетради. Каждая задача должна содержать условие, подробное решение и вывод.

1. Введение в математический анализ

Задача 1. Найти область определения функции.

5.


Задача 2. Найти пределы функций.


.

Задача 3. Найти точки разрыва функции и определить их тип.

1. 2. 3.


Глава 2. Дифференциальное исчисление функции одной переменной

Задача 4. Найти производные данных функций.

1. а); б) в) y = ;

г) y = x 6 + + + 5; д) y = x tg x + ln sin x + e 3x ;

е) y = 2 x - arcsin x .

2. а) ; б) y = ; в) y = ; г) y = x 2 –+ 3; д) y = e cos ; е) y = .

3. а) y = lnx; б) y =; в) y = ln;

4. а) y = ; б) y = (e 5 x – 1) 6 ; в) y = ; г) y = ; д) y = x 8 ++ + 5; е) y = 3 x - arcsin x .

5. а) y = 2x 3 - + e x ; б) y = ; в) y = ;

г) y = ; д) y = 2 cos ; е) y = .

6. а) y = lnx; б) y =; в) y = ln;

г) y = ; д) y = x 7 + + 1; е) y = 2.

7. а) ; б) y = ; в)y = ; г)y = x 2 + xsinx + ; д) y = e cos ; е) y = .

8. а) y = ; б) y = (3 x – 4) 6 ; в) y = sintg;

г) y = 3x 4 – – 9+ 9; д) y = ;

е)y = x 2 + arcsin x - x.

9. а); б); в) y = ; г) y = 5 sin 3 x ; д) y = x 3 – – 6+ 3; е) y = 4x 4 + ln.

10. а) б) y = ; в) y = (3 x – 4) 6 ; г) y = ; д)y = x 2 - x; е) y = e sin 3 x + 2 .

Задача 5. Исследовать функцию и построить ее график.

1. а) б) в) .

2. а) б) в) .

3. а) б) в) .

4. б) в)

5. а) б) в) .

6. а) б) в) .

7. а) б) в) .

8. а) б) в) .

9. а) б) в) .

10. а) б) в) .


Задача 6. Найти наибольшее и наименьшее значение функции на заданном отрезке.

1. .

3. .

6. .

8. .

9. .

10. .


Глава 3. Интегральное исчисление

Задача 7. Найти неопределенные интегралы.

1. а) б);

2. а) ;б) в) г) .

4. г)

5. а); б); в) ; г).

6. а); б); в); г)

7. а) ; б) ; в) ; г)

8. а) ; б); в); г) .

9. а) ; б) в); г).

10. а) б) в) ; г) .


Задача 8. Вычислить определенные интегралы.

1.

2.

3.

4.

5.

6.

7. .

8.

9.

10.

Задача 9. Найти несобственные интегралы или доказать, что они расходятся.

1. .

2. .

3. .

4. .

5. .

6. .

7. .

8. .

9. .

10. .

Задача 10. Найти площадь области, ограниченной кривыми

1. .2. .

5. 6.

7. , .8..

10. , .


Глава 4. Дифференциальное исчисление функции нескольких переменных.

Задача 11. Найти область определения функции (показать на чертеже).

Задача 12. Исследовать на непрерывность функции при

Задача 13. Найти производную неявно заданной функции.

Задача 14. Вычислить приближенно

1. а) ;б) ; в)

2. а) ; б) ; в) .

3. а); б) ; в) .

4. а); б) ; в) .

5. а); б) ; в) .

6. а); б) ; в) .

7. а); б) ; в) .

8. а) ;б) ; в)

9. а) ; б) ; в) .

10. а) ;б) ; в)

Задача 15. Исследовать функцию на экстремумы.

7. .

8. .

9. .

10. .

Задача 16. Найти наибольшее и наименьшее значение функции в данной замкнутой области.

1. в прямоугольнике

2.

3. в прямоугольнике

4. в области, ограниченной параболой

И осью абсцисс.

5. в квадрате

6. в треугольнике, ограниченном осями координат и прямой

7. в треугольнике, ограниченном осями координат и прямой

8. в треугольнике, ограниченном осями координат и прямой

9. в области, ограниченной параболой

И осью абсцисс.

10. в области, ограниченной параболой

И осью абсцисс.


Основная

1. М.С. Красс, Б.П. Чупрынов. Основы математики и ее приложение в экономическом образовании: Учебник. – 4-е изд., исп. – М.: Дело, 2003.

2. М.С. Красс, Б.П. Чупрынов. Математика для экономических специальностей: Учебник. – 4-е изд., исп. – М.: Дело, 2003.

3. М.С. Красс, Б.П. Чупрынов. Математика для экономического бакалавриата. Учебник. – 4-е изд., исп. – М.: Дело, 2005.

4. Высшая математика для экономистов. Учебник для вузов / Н.Ш. Кремер, Б.А. Путко, И.М. Тришин, М.Н. Фридман; Под ред. проф. Н.Ш. Кремера, - 2-е изд., перераб. и доп. – М: ЮНИТИ, 2003.

5. Кремер Н.Ш, Путко Б.А., Тришин И.М., Фридман М.Н.. Высшая математика для экономических специальностей. Учебник и Практикум (части I и II) / Под ред. проф. Н.Ш. Кремера, - 2-е изд., перераб. и доп. – М: Высшее образование, 2007. – 893с. – (Основы наук)

6. Данко П.Е., Попов А.Г., Кожевникова Т.Я. Высшая математика в упражнениях и задачах. М. высшая школа. 1999.

Дополнительная

1. И.И. Баврин, В.Л. Матросов. Высшая математика. «Гуманитарный издательский центр Владос», 2002.

2. И.А. Зайцев. Высшая математика. «Высшая школа», 1998.

3. А.С. Солодовников, В.А. Бабайцев, А.В. Браилов, И.Г. Шандра. Математика в экономике / в двух частях/. М. Финансы и статистика. 1999.

На котором мы разобрали простейшие производные, а также познакомились с правилами дифференцирования и некоторыми техническими приемами нахождения производных. Таким образом, если с производными функций у Вас не очень или какие-нибудь моменты данной статьи будут не совсем понятны, то сначала ознакомьтесь с вышеуказанным уроком. Пожалуйста, настройтесь на серьезный лад – материал не из простых, но я все-таки постараюсь изложить его просто и доступно.

На практике с производной сложной функции приходится сталкиваться очень часто, я бы даже сказал, почти всегда, когда Вам даны задания на нахождение производных.

Смотрим в таблицу на правило (№5) дифференцирования сложной функции:

Разбираемся. Прежде всего, обратим внимание на запись . Здесь у нас две функции – и , причем функция , образно говоря, вложена в функцию . Функция такого вида (когда одна функция вложена в другую) и называется сложной функцией.

Функцию я буду называть внешней функцией , а функцию – внутренней (или вложенной) функцией .

! Данные определения не являются теоретическими и не должны фигурировать в чистовом оформлении заданий. Я применяю неформальные выражения «внешняя функция», «внутренняя» функция только для того, чтобы Вам легче было понять материал.

Для того, чтобы прояснить ситуацию, рассмотрим:

Пример 1

Найти производную функции

Под синусом у нас находится не просто буква «икс», а целое выражение , поэтому найти производную сразу по таблице не получится. Также мы замечаем, что здесь невозможно применить первые четыре правила, вроде бы есть разность, но дело в том, что «разрывать на части» синус нельзя:

В данном примере уже из моих объяснений интуитивно понятно, что функция – это сложная функция, причем многочлен является внутренней функцией (вложением), а – внешней функцией.

Первый шаг , который нужно выполнить при нахождении производной сложной функции состоит в том, чтобы разобраться, какая функция является внутренней, а какая – внешней .

В случае простых примеров вроде понятно, что под синус вложен многочлен . А как же быть, если всё не очевидно? Как точно определить, какая функция является внешней, а какая внутренней? Для этого я предлагаю использовать следующий прием, который можно проводить мысленно или на черновике.

Представим, что нам нужно вычислить на калькуляторе значение выражения при (вместо единицы может быть любое число).

Что мы вычислим в первую очередь? В первую очередь нужно будет выполнить следующее действие: , поэтому многочлен и будет внутренней функцией :

Во вторую очередь нужно будет найти , поэтому синус – будет внешней функцией:

После того, как мы РАЗОБРАЛИСЬ с внутренней и внешней функциями самое время применить правило дифференцирования сложной функции .

Начинаем решать. Из урока Как найти производную? мы помним, что оформление решения любой производной всегда начинается так – заключаем выражение в скобки и ставим справа вверху штрих:

Сначала находим производную внешней функции (синуса), смотрим на таблицу производных элементарных функций и замечаем, что . Все табличные формулы применимы и в том, случае, если «икс» заменить сложным выражением , в данном случае:

Обратите внимание, что внутренняя функция не изменилась, её мы не трогаем .

Ну и совершенно очевидно, что

Результат применения формулы в чистовом оформлении выглядит так:

Постоянный множитель обычно выносят в начало выражения:

Если осталось какое-либо недопонимание, перепишите решение на бумагу и еще раз прочитайте объяснения.

Пример 2

Найти производную функции

Пример 3

Найти производную функции

Как всегда записываем:

Разбираемся, где у нас внешняя функция, а где внутренняя. Для этого пробуем (мысленно или на черновике) вычислить значение выражения при . Что нужно выполнить в первую очередь? В первую очередь нужно сосчитать чему равно основание: , значит, многочлен – и есть внутренняя функция:

И, только потом выполняется возведение в степень , следовательно, степенная функция – это внешняя функция:

Согласно формуле , сначала нужно найти производную от внешней функции, в данном случае, от степени. Разыскиваем в таблице нужную формулу: . Повторяем еще раз: любая табличная формула справедлива не только для «икс», но и для сложного выражения . Таким образом, результат применения правила дифференцирования сложной функции следующий:

Снова подчеркиваю, что когда мы берем производную от внешней функции , внутренняя функция у нас не меняется:

Теперь осталось найти совсем простую производную от внутренней функции и немного «причесать» результат:

Пример 4

Найти производную функции

Это пример для самостоятельного решения (ответ в конце урока).

Для закрепления понимания производной сложной функции приведу пример без комментариев, попробуйте самостоятельно разобраться, порассуждать, где внешняя и где внутренняя функция, почему задания решены именно так?

Пример 5

а) Найти производную функции

б) Найти производную функции

Пример 6

Найти производную функции

Здесь у нас корень, а для того, чтобы продифференцировать корень, его нужно представить в виде степени . Таким образом, сначала приводим функцию в надлежащий для дифференцирования вид:

Анализируя функцию, приходим к выводу, что сумма трех слагаемых – это внутренняя функция, а возведение в степень – внешняя функция. Применяем правило дифференцирования сложной функции :

Степень снова представляем в виде радикала (корня), а для производной внутренней функции применяем простое правило дифференцирования суммы:

Готово. Можно еще в скобках привести выражение к общему знаменателю и записать всё одной дробью. Красиво, конечно, но когда получаются громоздкие длинные производные – лучше этого не делать (легко запутаться, допустить ненужную ошибку, да и преподавателю будет неудобно проверять).

Пример 7

Найти производную функции

Это пример для самостоятельного решения (ответ в конце урока).

Интересно отметить, что иногда вместо правила дифференцирования сложной функции можно использовать правило дифференцирования частного , но такое решение будет выглядеть как извращение необычно. Вот характерный пример:

Пример 8

Найти производную функции

Здесь можно использовать правило дифференцирования частного , но гораздо выгоднее найти производную через правило дифференцирования сложной функции:

Подготавливаем функцию для дифференцирования – выносим минус за знак производной, а косинус поднимаем в числитель:

Косинус – внутренняя функция, возведение в степень – внешняя функция.
Используем наше правило :

Находим производную внутренней функции, косинус сбрасываем обратно вниз:

Готово. В рассмотренном примере важно не запутаться в знаках. Кстати, попробуйте решить его с помощью правила , ответы должны совпасть.

Пример 9

Найти производную функции

Это пример для самостоятельного решения (ответ в конце урока).

До сих пор мы рассматривали случаи, когда у нас в сложной функции было только одно вложение. В практических же заданиях часто можно встретить производные, где, как матрешки, одна в другую, вложены сразу 3, а то и 4-5 функций.

Пример 10

Найти производную функции

Разбираемся во вложениях этой функции. Пробуем вычислить выражение с помощью подопытного значения . Как бы мы считали на калькуляторе?

Сначала нужно найти , значит, арксинус – самое глубокое вложение:

Затем этот арксинус единицы следует возвести в квадрат :

И, наконец, семерку возводим в степень :

То есть, в данном примере у нас три разные функции и два вложения, при этом, самой внутренней функцией является арксинус, а самой внешней функцией – показательная функция.

Начинаем решать

Согласно правилу сначала нужно взять производную от внешней функции. Смотрим в таблицу производных и находим производную показательной функции: Единственное отличие – вместо «икс» у нас сложное выражение , что не отменяет справедливость данной формулы. Итак, результат применения правила дифференцирования сложной функции следующий.

для студентов лечебного, педиатрического, стоматологического

и медико-профилактического факультетов

к лабораторной работе

«Основные понятия математического анализа»

1. Научно-методическое обоснование темы:

Понятия производной и дифференциала являются одними из основных понятий математического анализа. Вычисление производных необходимо при решении многих задач в физике и математике (нахождение скорости, ускорения, давления и т. д.). Важность понятия производной, в частности, определяется тем, что производная функции характеризует скорость изменения этой функции при изменении ее аргумента.

Применение дифференциала позволяет осуществить приближенные вычисления, а также проводить оценку погрешностей.

Способы нахождения производных и дифференциалов функций и их применение составляют основную задачу дифференциального исчисления. Необходимость понятия производной возникает в связи с постановкой задачи о вычислении скорости движения и нахождении угла касательной к кривой. Возможна и обратная задача: по скорости определить пройденный путь, а по тангенсу угла наклона касательной найти соответствующую функцию. Такая обратная задача приводит к понятию неопределенного интеграла.

Понятие определенного интеграла используют в ряде практических задач, в частности в задачах по вычислению площадей плоских фигур, расчету работы, производимой переменной силой, нахождению среднего значения функции.

При математическом описании различных физических, химических, биологических процессов и явлений часто используют уравнения, содержащие не только изучаемые величины, но и их производные различных порядков от этих величин. Например, в соответствии с простейшей версией закона размножения бактерий, скорость размножения пропорциональна количеству бактерий в данный момент времени. Если это количество обозначить через N(t), то в соответствии с физическим смыслом производной скорость размножения бактерий представляет собой производную N(t), и на основании упомянутого закона можно записать соотношение N"(t)=к∙N, где к>0 - коэффициент пропорциональности. Полученное уравнение не является алгебраическим, так как содержит не только неизвестную функцию N(t), но и ее производную первого порядка.

2. Краткая теория:

1. Задачи, приводящие к понятию производной

1. Задача о нахождении скорости v материальной точки . Пусть некоторая материальная точка совершает прямолинейное движение. В момент времени t 1 точка находится в положении М 1. В момент времени t 2 в положении М 2 . Обозначим промежуток М 1 , М 2 через ΔS ; t 2 – t 1 =Δt . Величина называется средней скоростью движения. Чтобы найти мгновенную скорость точки в положенииМ 1 необходимо Δt устремить к нулю. Математически это значит, что

, (1)

Таким образом, для нахождения мгновенной скорости материальной точки необходимо вычислить предел отношения приращения функции ΔS к приращению аргумента Δt при условии, что Δt→0.

2. Задача о нахождении угла наклона касательной к графику функции .

Рис.1

Рассмотрим график некоторой функции у=f(х). Чему равен угол наклона
касательной, проведенной в точкеМ 1 ? В точке М 1 проведем касательную к графику функции. На графике выберем произвольную точку М 2 и проведем секущую. Она наклонена к оси ОХ под углом α 1 . Рассмотрим ΔМ 1 М 2 А:

, (2)

Если точку М 1 фиксировать, а точку М 2 приближать к М 1 , то секущая М 1 М 2 будет переходить в касательную к графику функции в точке М 1 и можно записать:

, (3)

Таким образом, необходимо вычислить предел отношения приращения функции к приращению аргумента, если приращение аргумента стремится к нулю.

Предел отношения приращения Δy функции у=f(х) к приращению аргумента Δx в заданной точке х 0 при стремлении Δx к нулю, называется производной функции в заданной точке.

Обозначения производной: у", f "(х), . По определению

, (4)

где Δx=х 2 -х 1 – приращение аргумента (разность между двумя последующими достаточно близкими значениями аргумента), Δy=у 2 -у 1 – приращение функции (разность между значениями функции, соответствующими этим значениям аргумента).

Нахождение производной данной функции называется ее дифференцированием . Дифференцирование основных элементарных функций производится по готовым формулам (см. табл.), а также с помощью правил :

    Производная алгебраической суммы функций равна сумме производных этих функций:

(u + υ )"= u " + υ "

2. Производная произведения двух функций равна сумме произведений второй функции на производную первой и первой функции на производную второй:

(u∙ υ )"= u" υ + u υ "

3. Производная частного двух функций равна дроби, числитель которой есть разность между произведениями знаменателя на производную числителя и числителя на производную знаменателя, а знаменатель- квадрат знаменателя:

Физический смысл производной . Из сравнения (4) и (1) следует, что мгновенная скорость прямолинейного движения материальной точки равна производной зависимости ее координаты от времени.

Общий смысл производной функции заключается в том, что она характеризует скорость (быстроту) изменения функции при данном изменении аргумента. Быстрота протекания физических, химических и других процессов, например скорость охлаждения тела, скорость химической реакции, скорость размножения бактерий и т.п., также выражается при помощи производной.

Геометрический смысл производной. Величину тангенса угла наклона касательной, проведенной к графику функции, в математике называют угловым коэффициентом касательной.

Угловой коэффициент касательной, проведенной к графику дифференцируемой функции в некоторой точке, численно равен производной функции в данной точке.

Это утверждение называют геометрическим смыслом производной.



Загрузка...